Script generated by TTT

Title: profile1 (16.07.2013)

Date: Tue Jul 16 12:01:56 CEST 2013

Duration: 84:53 min

Pages: 40

- Basic scenario: Players simultaneously choose action to perform → result of the actions they select → outcome in discrete state space Ω
- outcome depends on the *combination* of actions
- Assume: each player has just two possible actions C ("cooperate") and D ("defect")
- Environment behavior given by state transformer function:

au : \underbrace{Ac} imes imes $ext{Ac}$ $o \Omega$ Player i's action

Examples for state transformer function

- $\tau(D,D) = \omega_1$ $\tau(D,C) = \omega_2$ $\tau(C,D) = \omega_3$ $\tau(C,C) = \omega_4$ (environment is sensitive to actions of both players)
- $\tau(D,D) = \omega_1$ $\tau(D,C) = \omega_1$ $\tau(C,D) = \omega_1$ $\tau(C,C) = \omega_1$ (Neither player has any influence in this environment.)
- $\tau(D,D) = \omega_1$ $\tau(D,C) = \omega_2$ $\tau(C,D) = \omega_1$ $\tau(C,C) = \omega_2$ (environment is controlled by j.)

Examples for state transformer function

Examples for state transformer function

- $\tau(D,D) = \omega_1$ $\tau(D,C) = \omega_2$ $\tau(C,D) = \omega_3$ $\tau(C,C) = \omega_4$ (environment is sensitive to actions of both players)
- $\tau(D,D) = \omega_1$ $\tau(D,C) = \omega_1$ $\tau(C,D) = \omega_1$ $\tau(C,C) = \omega_1$ (Neither player has any influence in this environment.)
- $\tau(D,D) = \omega_1$ $\tau(D,C) = \omega_2$ $\tau(C,D) = \omega_1$ $\tau(C,C) = \omega_2$ (environment is controlled by j.)

- $\tau(D,D) = \omega_1$ $\tau(D,C) = \omega_2$ $\tau(C,D) = \omega_3$ $\tau(C,C) = \omega_4$ (environment is sensitive to actions of both players)
- $\tau(D,D) = \omega_1$ $\tau(D,C) = \omega_1$ $\tau(C,D) = \omega_1$ $\tau(C,C) = \omega_1$ (Neither player has any influence in this environment.)
- $\tau(D,D) = \omega_1 \quad \tau(D,C) = \omega_2 \quad \tau(C,D) = \omega_1 \quad \tau(C,C) = \omega_2$ (environment is controlled by j.)

1 b @ 6 0 0 00

Rational Behavior

- Assumption: Environment is sensitive to actions of both players: $\tau(D,D)=\omega_{1}$ $\tau(D,C)=\omega_{2}$ $\tau(C,D)=\omega_{3}$ $\tau(C,C)=\omega_{4}$
- Assumption: $u_i(\omega_1)=1$ $u_i(\omega_2)=1$ $u_i(\omega_3)=4$ $u_i(\omega_4)=4$ Utility functions: $u_j(\omega_1)=1$ $u_j(\omega_2)=4$ $u_j(\omega_3)=1$ $u_j(\omega_4)=4$
- Short $u_i(D,D) = 1_{\triangleright} u_i(D,C) = 1 u_i(C,D) = 4 u_i(C,C) = 4$ notation: $u_i(D,D) = 1 u_i(D,C) = 4 u_i(C,D) = 1 u_i(C,C) = 4$
- \rightarrow player's preferences: (also in short notation): $C, C \succeq_i C, D \succ_i D, C \succeq_i D, D$

(1) (b) (2) (B) (Q) (...)

Rational Behavior

- Assumption: Environment is sensitive to actions of both players: $\tau(D,D)=\omega_1$ $\tau(D,C)=\omega_2$ $\tau(C,D)=\omega_3$ $\tau(C,C)=\omega_4$
- Assumption: $u_i(\omega_1) = 1$ $u_i(\omega_2) = 1$ $u_i(\omega_3) = 4$ $u_i(\omega_4) = 4$ Utility functions: $u_i(\omega_1) = 1$ $u_i(\omega_2) = 4$ $u_i(\omega_3) = 1$ $u_i(\omega_4) = 4$
- Short $u_i(D,D) = 1$ $u_i(D,C) = 1$ $u_i(C,D) = 4$ $u_i(C,C) = 4$ notation: $u_j(D,D) = 1$ $u_j(D,C) = 4$ $u_j(C,D) = 1$ $u_j(C,C) = 4$
- \rightarrow player's preferences: (also in short notation): $C, C \succeq_i C, D \rightarrow_i D, C \succeq_i D, D$

$$u_{i}(D, D) = 1$$
 $u_{i}(D, C) = 1$ $u_{i}(C, D) = 4$ $u_{i}(C, C) = 4$
 $u_{j}(D, D) = 1$ $u_{j}(D, C) = 4$ $u_{j}(C, D) = 1$ $u_{j}(C, C) = 4$
 $C, C \succeq_{i} C, D \succ_{i} D, C \succeq_{i} D, D$
 $C, C \succeq_{j} D, C \succ_{j} C, D \succeq_{j} D, D$

- "C" is the *rational choice* for i. (Because i (strongly) prefers all outcomes that arise through C over all outcomes that arise through D.)
- "C" is the *rational choice* for j. (Because j (strongly) prefers all outcomes that arise through C over all outcomes that arise through D.)

(1) (b) (C) (B) (Q) (...)

Dominant Strategies and Nash Equilibria

• With respect to "what should I do": If $\Omega = \Omega_I \cup \Omega_2$ we say " Ω_I weakly dominates Ω_2 for player i" iff for player i every state (outcome) in Ω_I is preferable to or at least as good as every state in Ω_2 :

$$\forall \omega_1 \forall \omega_2 : (\omega_1 \in \Omega_1 \land \omega_2 \in \Omega_2) \rightarrow \omega_1 \succeq_i \omega_2$$

• If $\Omega=\Omega_I\cup\Omega_2$ we say " Ω_I strongly dominates Ω_2 for player i" iff for player i every state (outcome) in Ω_I is preferable to every state in Ω_2 :

$$\forall \omega_1 \forall \omega_2 : (\omega_1 \in \Omega_1 \land \omega_2 \in \Omega_2) \rightarrow \omega_1 \succ \omega_2$$

Example:

$$\begin{array}{ll} \Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\} & \Omega_1 = \{\omega_1, \omega_2\} \\ \omega_1 \succ_i \omega_2 \succ_i \omega_3 \succ_i \omega_4 & \Omega_2 = \{\omega_3, \omega_4\} \end{array} \right\} \begin{array}{l} \text{\ensuremath{$_{\!\!4}$}\ dominates\ Ω_2} \\ \text{for player i":} \end{array}$$

Game theory: characterize the previous scenario in a payoff matrix:
i

		defect	соор
	defect	1	4
j		1	1⅓
	coop	1	4
		4	4

same as:
$$\begin{array}{lll} u_i(D,D)=1 & u_i(D,C)=1 & u_i(C,D)=4 & u_i(C,C)=4 \\ u_j(D,D)=1 & u_j(D,C)=4 & u_j(C,D)=1 & u_j(C,C)=4 \end{array}$$

- Player *i* is "column player"
- Player j is "row player"

Dominant Strategies and Nash Equilibria

- Game theory notation: actions are called "strategies"
- Notation: s^* is the set of possible outcomes (states) when "playing strategy s^* (executing action s)
- Example: if we have (as before):

$$\tau(D,D) = \omega_1 \quad \tau(D,C) = \omega_2 \quad \tau(C,D) = \omega_3 \quad \tau(C,C) = \omega_4$$

we have (from player i's point of view):

$$D^* = \{\omega_1, \omega_2\}$$
 $C^* = \{\omega_3, \omega_4\}$

- Notation: "strategy sI (strongly / weakly) dominates s2" iff sI* (strongly / weakly) dominates s2*
- If one strategy strongly dominates the other → question what to do is easy. (do first)

The Prisoner's Dilemma

- Two criminals are held in separate cells (no communication):
 - (1) One confesses and the other does not \rightarrow confessor is freed and the other gets 3 years
 - (2) Both confess → each gets 2 years
 - (3) Neither confesses → both get 1 year
- Associations: Confess == D: Not Confess == C
- Pavoff matrix i defects i cooperates 2 0 i defects 2 5 3 5 i cooperates

0

The Prisoner's Dilemma

- Two criminals are held in separate cells (no communication):
 - (1) One confesses and the other does not \rightarrow confessor is freed and the other gets 3 years

3

- (2) Both confess → each gets 2 years
- (3) Neither confesses → both get 1 year
- Associations: Confess == D: Not Confess == C
- Payoff matrix i defects i cooperates 2 0 i defects 2 5 5 3 i cooperates 3 0

The Prisoner's Dilemma

- Two criminals are held in separate cells (no communication):
 - (1) One confesses and the other does not \rightarrow confessor is freed and the other gets 3 years
 - (2) Both confess → each gets 2 years
 - (3) Neither confesses → both get 1 year
- Associations: Confess == D: Not Confess == C
- Payoff matrix

oπ matrix	i de	fects	і соор	erates
j defects	2	2	5	0
j cooperates	0	5	3	3

The Prisoner's Dilemma

	i:D	i:C
j:D	2 2	§ 0
j:C	0 5	3

$$u_i(D,D) = 2$$
, $u_i(D,C) = 5$, $u_i(C,D) = 0$, $u_i(C,C) = 3$
 $u_j(D,D) = 2$, $u_j(D,C) = 0$, $u_j(C,D) = 5$, $u_j(C,C) = 3$
 $(D,C) \succ_i (C,C) \succ_i (D,D) \succ_i (C,D)$
 $(C,D) \succ_j (C,C) \succ_j (D,D) \succ_j (D,C)$

- Take place of prisoner (e.g. prisoner i) → Course of Reasoning:
 - suppose I cooperate: If j also cooperates \rightarrow we both get payoff 3. If j defects → I get payoff 0. → Best guaranteed payoff when I cooperate is 0
 - suppose I defect: If j cooperates → I get payoff 5. If j also defects → both get payoff 2. → Best quaranteed payoff when I defect is 2
 - If I defect I'll get a minimum guaranteed payoff of 2. If I cooperate I'll get a minimum guaranteed payoff of 0.
 - If prefer guaranteed payoff of 2 to guaranteed payoff of 0.
- → I should defect

The Prisoner's Dilemma

	i:D	i:C
j:D	2 2	5
j:C	0	3

$$u_i(D,D) = 2$$
, $u_i(D,C) = 5$, $u_i(C,D) = 0$, $u_i(C,C) = 3$
 $u_j(D,D) = 2$, $u_j(D,C) = 0$, $u_j(C,D) = 5$, $u_j(C,C) = 3$

$$(D,C) \succ_i (C,C) \succ_i (D,D) \succ_i (C,D)$$

 $(C,D) \succ_i (C,C) \succ_i (D,D) \succ_i (D,C)$

- Take place of prisoner (e.g. prisoner i) → Course of Reasoning:
 - suppose I cooperate: If j also cooperates → we both get payoff 3. If j defects → I get payoff 0. → Best guaranteed payoff when I cooperate is 0
 - suppose I defect: If j cooperates → I get payoff 5. If j also defects → both get payoff 2. → Best guaranteed payoff when I defect is 2
 - If I defect I'll get a minimum guaranteed payoff of 2. If I cooperate I'll get a minimum guaranteed payoff of 0.
 - > If prefer guaranteed payoff of 2 to guaranteed payoff of 0.
 - → I should defect

The Prisoner's Dilemma

	i:D	i:C
j:D	2 2	5
j:C	0	3

$$u_i(D,D) = 2$$
, $u_i(D,C) = 5$, $u_i(C,D) = 0$, $u_i(C,C) = 3$
 $u_j(D,D) = 2$, $u_j(D,C) = 0$, $u_j(C,D) = 5$, $u_j(C,C) = 3$

$$(D,C) \succ_i (C,C) \succ_i (D,D) \succ_i (C,D)$$

 $(C,D) \succ_i (C,C) \succ_i (D,D) \succ_i (D,C)$

- only one Nash equilibrium: (D,D). ("under the assumption that the other does D, one can do no better than do D")
- Intuition says: (C,C) is better than (D,D) so why not (C,C)?
 → but if player assumes that other player does C it is BEST to do D! → seemingly "waste of utility"
- "shocking" truth: defect is rational, cooperate is irrational
- Other prisoner's dilemma: Nuclear arms reduction (D: do not reduce, C: reduce)

The Prisoner's Dilemma

$$u_i(D,D) = 2$$
, $u_i(D,C) = 5$, $u_i(C,D) = 0$, $u_i(C,C) = 3$
 $u_j(D,D) = 2$, $u_j(D,C) = 0$, $u_j(C,D) = 5$, $u_j(C,C) = 3$
 $(D,C) \succ_i (C,C) \succ_i (D,D) \succ_i (C,D)$
 $(C,D) \succ_i (C,C) \succ_i (D,D) \succ_i (D,C)$

- only one Nash equilibrium: (D,D). ("under the assumption that the other does D, one can do no better than do D")
- Intuition says: (C,C) is better than (D,D) so why not (C,C)?
 → but if player assumes that other player does C it is BEST to do D! → seemingly "waste of utility"
- "shocking" truth: defect is rational, cooperate is irrational
- Other prisoner's dilemma: Nuclear arms reduction (D: do not reduce, C: reduce)

The Prisoner's Dilemma

- Two criminals are held in separate cells (no communication):
 - (1) One confesses and the other does not → confessor is freed and the other gets 3 years
 - (2) Both confess → each gets 2 years
 - (3) Neither confesses → both get 1 year
- Associations: Confess == D; Not Confess == C

Payoff matrix		i defe	ects	і сооре	erates
	j defects	2	2	5	№ 0
j	cooperates		5	3	_3

"sucker's payoff"

Other symmetric 2x2 Games

Stag Hunt

- Going back to J.J.Russeau (1775)
- Modern variant: You and a friend decide: good joke to appear both naked on a party. C: really do it; D: not do it

$$(C,C) \succ_i (D,C) \succ_i (D,D) \succ_i (C,D)$$

	i:	D	į:	:C
j:D	1	1	2	0
j:C	0	2	3	3

Two Nash equilibria: (D,D), (C,C)
 (Assuming the other does D you can do no better than do D Assuming the other does C you can do no better than do C)

Other symmetric 2x2 Games

Game of Chicken

- Going back to a James Dean film
- Modern variant: Gangster and hero drive cars directly towards each other C: steer away; D: not steer away

$$(D,C) \succ_i (C,C) \succ_i (C,D) \succ_i (D,D)$$

	i:D	i:C
j:D	0 0	3 1
j:C	1 3	2

Two Nash equilibria: (D,C), (C,D)
 (Assuming the other does D you can do no better than do C Assuming the other does C you can do no better than do D)

Other symmetric 2x2 Games

Game of Chicken

- Going back to a James Dean film
- Modern variant: Gangster and hero drive cars directly towards each other C: steer away; D: not steer away

$$(D,C) \succ_i (C,C) \succ_i (C,D) \succ_i (D,D)$$

	i:D	i:C
j:D	0	3
j:C	1 3	2 2

• Two Nash equilibria: (D,C), (C,D)

(Assuming the other does D you can do no better than do C Assuming the other does C you can do no better than do D)

Notation: Strategic Form Games

• Set § of players: {1,2,...,I}

Example: {1,2}

• Player index: $i \in \mathcal{G}$

• Pure Strategy Space S_i of player i Example: S₁={U,M,D} and S₂={L,M,R}

• Stragegy profile $s=(s_1,...s_l)$ where each $s_i \in S_i$ Example: (D,M)

	L	М	R
U	4,3	5,1	6,2
М	2,1	8,4	3,6
D	3,0	9,6	2,8

- (Finite) space $S = X_i S_i$ of strategy profiles $s \in S$ Example: $S = \{ (U,L), (U,M),..., (D,R) \}$
- Payoff function u_i : $S \rightarrow \mathbb{R}$ gives von Neumann-Morgenstern-utility $u_i(s)$ for player i of strategy profile $s \in S$ Examples: $u_1((U,L))=4$, $u_2((U,L))=3$, $u_1((M,M))=8$
- Set of player i's opponents: "-i" Example: -1={2}

Notation: Strategic Form Games

• Set § of players: {1,2,...,I}

Example: {1,2}

Diaman in days i = 6		_	IVI	l K
Player index: $i \in \mathcal{S}$	- 11	4 3	5,1	6 2
Pure Strategy Space S. of player i	U	,	, 1	, _

Example: $S_1 = \{U, M, D\}$ and $S_2 = \{L, M, R\}$

Stragegy profile s=(s₁,...s_i) where each $s_i \in S_i$

Example: (D.M)

}	M	2,1	8,4	3,6
	D	3,0	9,6	2,8

• (Finite) space S = X; S; of strategy profiles s ∈ S

Example: $S = \{ (U,L), (U,M),..., (D,R) \}$

• Payoff function $u_i: S \rightarrow \mathbb{R}$ gives von Neumann-Morgenstern-utility $u_i(s)$ for player i of strategy profile $s \in S$

Examples: $u_1((U,L))=4$, $u_2((U,L))=3$, $u_1((M,M))=8$

• Set of player i's opponents: "-i"

Example: $-1 = \{2\}$

Notation: Strategic Form Games

• Sat @ of playors: 11.2 IL

Set 3 of players: {1,2,,I}				
Example: {1,2}		L	M	R
• Player index: $i \in \mathcal{I}$				
Pure Strategy Space S _i of player i	U	4,3	5,1	6,2
Example: $S_1 = \{U, M, D\}$ and $S_2 = \{L, M, R\}$ Stragegy profile $s = (s_1,, s_l)$ where	M	2,1	8,4	3,6
each $s_i \in S_i$ Example: (D,M)	D	3,0	9,6	2,8

• (Finite) space $S = X_i S_i$ of strategy profiles $s \in S$ Example: $S = \{ (U,L), (U,M),..., (D,R) \}$

Payoff function u_i: S→R gives von Neumann-Morgenstern-utility u_i(s) for player i of strategy profile $s \in S$

Examples: $u_1((U,L))=4$, $u_2((U,L))=3$, $u_1((M,M))=8$

Set of player i's opponents: "-i" Example: $-1=\{2\}$

Notation: Strategic Form Games

• Set § of players: {1,2,...,I}

Example: {1,2}

Player index: $i \in \mathcal{S}$

Pure Strategy Space S: of player i Example: $S_1 = \{U, M, D\}$ and $S_2 = \{L, M, R\}$

Stragegy profile s=(s₁,...s₁) where each $s_i \in S_i$

Example: (D,M)

	L	М	R
U	4,3	5,1	6,2
M	2,1	8,4	3,6
D	3,0	9,6	2 ,8

• (Finite) space $S = X_i S_i$ of strategy profiles $s \in S$

Example: $S = \{ (U,L), (U,M),..., (D,R) \}$

• Payoff function $u_i: S \rightarrow \mathbb{R}$ gives von Neumann-Morgenstern-utility $u_i(s)$ for player i of strategy profile $s \in S$

Examples: $u_1((U,L))=4$, $u_2((U,L))=3$, $u_1((M,M))=8$

• Set of player i's opponents: "-i"

Example: -1={2}

Notation: Strategic Form Games

• Set § of players: {1.2.....|}

Example: {1,2}

Plaver index: i ∈ §

Pure Strategy Space S_i of player i Example: $S_1 = \{U, M, D\}$ and $S_2 = \{L, M, R\}$

• Stragegy profile s=(s₁,...s₁) where each $s_i \in S_i$

Example: (D,M)

	L	M	R
U	4,3	5,1	6,2
M	2,1	8,4	3,6
D	3,0	9,6	2,8

• (Finite) space $S = X_i S_i$ of strategy profiles $s \in S$ Example: $S = \{ (U,L), (U,M),..., (D,R) \}$

• Payoff function u_i : $S \rightarrow \mathbb{R}$ gives von Neumann-Morgenstern-utility $u_i(s)$ for player i of strategy profile $s \in S$ Examples: $u_1((U,L))=4$, $u_2((U,L))=3$, $u_1((M,M))=8$

• Set of player i's opponents: "-i"

Example: $-1=\{2\}$

• Two Player zero sum game:

$$\forall s: \sum_{i=1}^{2} u_i(s) = 0$$

• Structure of game is common knowledge:

all players know;

all players know that all players know:

all players know that all players know that all players know;

• Mixed strategy $\&_i : S_i \rightarrow [0,1]$ Probability distribution over pure strategies (statistically independent for each player);

Examples: $\sigma_1(U)=1/3$, $\sigma_1(M)=2/3$, $\sigma_1(D)=0$;

 $\sigma'_1(U)=2/3$, $\sigma'_1(M)=1/6$, $\sigma'_1(D)=1/6$;

Thus: $\sigma_i(s_i)$ is the probability that player i assigns to strategy (action) si

	L	M	R
U	4,3	5,1	6,2
M	2,1	8,4	3,6
D	3,0	9,6	2,8

Notation: Strategic Form Games

• Two Player zero sum game:

$$\forall s: \sum_{i=1}^{2} u_i(s) = 0$$

- Structure of game is common knowledge:
- all players know;
- all players know that all players know;
- all players know that all players know that all players know;

• Mixed strategy $\sigma_i : S_i \rightarrow [0,1]$ Probability distribution over pure strategies (statistically independent for each player);

Examples: $\sigma_1(U)=1/3$, $\sigma_1(M)=2/3$, $\sigma_1(D)=0$;

 $\sigma'_{1}(U)=2/3$, $\sigma'_{1}(M)=1/6$, $\sigma'_{1}(D)=1/6$;

Thus: $\sigma_i(s_i)$ is the probability that player i assigns to strategy (action) si

• Two Player zero sum game:
$$\forall s: \sum\nolimits_{i=1}^2 u_i(s) = 0$$

• Structure of game is common knowledge:

all players know;

all players know that all players know:

all players know that all players know that all players know;

• Mixed strategy σ_i : $S_i \rightarrow [0,1]$ Probability distribution over pure strategies (statistically independent for each player);

Examples: $\sigma_1(U)=1/3$, $\sigma_1(M)=2/3$, $\sigma_1(D)=0$;

 $\sigma'_1(U)=2/3$, $\sigma'_1(M)=1/6$, $\sigma'_1(D)=1/6$;

Thus: σ_i(s_i) is the probability that player i assigns to strategy (action) s_i

	L	M	R
U	4,3	5,1	6,2
M	2,1	8,4	3,6
D	3,0	9,6	2,8

Sense of Mixed Strategy Concept

Example: Rock Paper Scissors

	Rock	Paper	Scissors
Rock	0,0	-1 , 1	1,-1
Paper	1,-1	0,0	-1,1
cissors	-1,1	1,-1	0,0

no pure NE, but mixed NE if both play (1/3, 1/3, 1/3)

- Space of mixed strategies for player i: \sum_{i}
- Space of mixed strategy profiles: $\sum = x_i \sum_i$
- Mixed strategy profile $\sigma = (\sigma_1, \sigma_2, ..., \sigma_l) \in \Sigma$
- Player i's payoff when a mixed strategy profile σ is played is

$$\sum_{s \in S} \left(\prod_{j=1}^{I} \sigma_{j}(s_{j}) \right) u_{i}(s)$$

denoted as $\,u_i(\sigma)$, is a linear function of the σ_i

A pure strategy of a player is a special mixed strategy of that player with one probability equal to 1 and all others equal to 0

- Space of mixed strategies for player i: \sum_{i}
- Space of mixed strategy profiles: $\sum = x_i \sum_i$
- Mixed strategy profile $\sigma = (\sigma_1, \sigma_2, ..., \sigma_l) \in \sum_{i \in I} \sigma_i$
- Player i's payoff when a mixed strategy profile σ is played is

$$\sum_{s\in S} \left(\prod_{j=1}^{I} \sigma_{j}(s_{j}) \right) u_{i}(s)$$

denoted as $u_i(\sigma)$, is a linear function of the σ_i

A pure strategy of a player is a special mixed strategy of that player with one probability equal to 1 and all others equal to 0

Notation: Strategic Form Games

- Space of mixed strategies for player i: \sum_{i}
- Space of mixed strategy profiles: $\sum = x_i \sum_i$
- Mixed strategy profile $\sigma = (\sigma_1, \sigma_2, ..., \sigma_l) \in \Sigma$
- Player i's payoff when a mixed strategy profile σ is played is

$$\sum_{s \in S} \left(\prod_{j=1}^{I} \sigma_{j}(s_{j}) \right) u_{i}(s)$$

denoted as $\,u_i(\sigma)$, is a linear function of the σ_i

A pure strategy of a player is a special mixed strategy of that player with one probability equal to 1 and all others equal to 0

(1) (b) (2) (6) (9) (w)

Notation: Strategic Form Games

- Space of mixed strategies for player i: \sum_{i}
- Space of mixed strategy profiles: $\sum = x_i \sum_i$
- Mixed strategy profile $\sigma = (\sigma_1, \sigma_2, ..., \sigma_l) \in \Sigma$
- Player i's payoff when a mixed strategy profile σ is played is

$$\sum_{s \in S} \left(\prod_{j=1}^{I} \sigma_{j}(s_{j}) \right) u_{i}(s)$$

denoted as $\,u_i(\sigma)$, is a linear function of the σ_i

A pure strategy of a player is a special mixed strategy of that player with one probability equal to 1 and all others equal to 0

Notation: Strategic Form Games

Example:

Let

$$\sigma_1(U)=1/3$$
, $\sigma_1(M)=1/3$, $\sigma_1(D)=1/3$
 $\sigma_2(L)=0$, $\sigma_2(M)=1/2$, $\sigma_2(R)=1/2$

or short

$$\sigma_1 = (1/3, 1/3, 1/3)$$

 $\sigma_2 = (0, 1/2, 1/2)$

B

	L	M	R
U	4,3	5,1	6,2
M	2,1	8,4	3,6
D	3,0	9,6	2,8

We then have:

$$\begin{array}{l} u_1(\sigma_{1,} \ \sigma_{2}) = \ 1/3 \ (0^*4 + \frac{1}{2}^*5 + \frac{1}{2}^*6) \\ & + \ 1/3 \ (0^*2 + \frac{1}{2}^*8 + \frac{1}{2}^*3) + \\ & 1/3 \ (0^*3 + \frac{1}{2}^*9 + \frac{1}{2}^*2) = \ 11/2 \end{array}$$

$$u_2(\sigma_{1} \ \sigma_{2}) = ... = 27/6$$

Games in Strategic Form & Nash Equilibrium

- What is rational to do?
- No matter what player 1 does: R gives player 2 a strictly higher payoff than M.

 "M is strictly dominated by R"
- \rightarrow player 1 knows that player 2 will not play M \rightarrow U is better than M or D
- $\stackrel{\bullet}{\rightarrow}$ player 2 knows that player 1 knows that player 2 will not play M → player 2 knows that player 1 will play U → player 2 will play L

_	U	4,3	5,1	6,2
\begin{align*} \begin	M	2,1	8,4	3,6
	D	3,0	9,6	2,8
_				

M

Games in Strategic Form & Nash Equilibrium

What is rational to do?

- No matter what player 1 does: R gives player 2 a strictly higher payoff than M.
 "M is strictly dominated by R"
- → player 1 knows that player 2 will not play M → U is better than M or D
- → player 2 knows that player 1 knows that player 2 will not play $M \rightarrow$ player 2 knows that player 1 will play $U \rightarrow$ player 2 will play L

_			1	
f than M.	U	4,3	5,1	6,2
er 2 will M or D	M	2,1	8,4	3,6
er 1 knows P player 2	D	3,0	9,6	2,8

[•] This elimination process: "iterated strict dominance"

Games in Strategic Form & Nash Equilibrium

- What is rational to do?
- No matter what player 1 does: R gives player 2 a strictly higher payoff than M.

 "M is strictly dominated by R"
- \rightarrow player 1 knows that player 2 will not play M \rightarrow U is better than M or D
- → player 2 knows that player 1 knows that player 2 will not play M → player 2 knows that player 1 will play U → player 2 will play L

	L	M	R
U	4,3	5,1	6,2
М	2,1	8,4	3,6
D	3,0	9,6	2,8

This elimination process: "iterated strict dominance"

This elimination process: "iterated strict dominance"

Games in Strategic Form & Nash Equilibrium

- New example:
- Player 1: M not dominated by U and M not dominated by D
- But: If Player 1 plays $\sigma_1 = (1/2, 0, 1/2)$ he will get $u(\sigma_1)=1/2$ regardless how player 2 plays
- → a pure strategy may be dominated by a mixed strategy even if it is not strictly dominated by any pure strategy

	L	R
U	2, 0	-1, 0
М	0, 0	0, 0
D	-1, 0	2, 0

