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Person Detection from Video
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“Speaker Diarization / Segmentation: given multi-party audio data (possibly
with background noise):
- who talks when?

--seqmentailon into speech / non-speech
--detection of sp iti
--clustering of sp

er segments (+ classification of speaker )

® Segmentation into s
-- Generate featur:
++ digital signal (pre-) processing
(involving e.g. sub-division signal into overlapping samples of
typically several ms, Fourier-transform etc.)
++ MEL filters = MEL cepstrum coefficients
++ Further Fourier- and other transformations

zero-crossing rates, energy statistics etc.

h / non-speech:
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Person Detection from Video

® First step: Face detection

® Naive apprach: simple pixel based binary classifier.
Problem: too many possibilities for non-faces

® Other approaches:
K
® detect correct relatively positioned patches of skin, eyes or other
face elements. Advantage; relatively robust against rotations

'Approach [6]: Use special features instead of pixels (advantage:
domain knowledge can be encoded into features), Intelligent feature
selection / combination of simple binary classifiers that work on
single features (AdaBoost)

® (optional second step: face recognition(e.g. via Eigenfaces (via PCA) [5])
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Person Detection from Video

® First step: Face detection

® Naive apprach: simple pixel based binary classifier.
Problem: too many possibilities for non-faces

® Other approaches:

® detect correct relatively positioned patches of skin, eyes or other
face elements. Advantage; relatively robust against rotations

'Approach [6]: Use special features instead of pixels (advantage:
domain knowledge can be encoded into features), Intelligent feature
selection / combination of simple binary classifiers that work on
single features (AdaBoost)

(optional second step: face recognition(e.g. via Eigentaces (via PCA) [5])
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Bildschirmprasentation starten Einrichten

Detecting Social Signals: Gestures and Posture

® Gestures:
--not many studies yet interpreting them as social signals
--several studies: gestures as means of input
(special example: touch interfaces)
--other study: automatic interpretation of sign lanquage

® Gesture recognition: main challenges:
--detecting gesture-relevant body parts: select feature spaces, e.g. via

++histograms of oriented gradients

++etc.
--modeling temporal dynamic e.g. via: [

++Hidden Markov Models (HMMs)
++Conditional Random Fields (CRFs)
++Dynamic Time Warping (DTW)

Klicken Sie, um Notizen hinzuzufigen

® Human figure detection:

® Main problem: too many options (clothes, accessoires)—> pixels as
features won'‘t work

° Approaches:

® features: histograms of directions of detected edges

Fig. 8. People detection. Examples of people detection in public spaces (pictures
from [216]). M
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In the standard type of hidden Markov model considered here, the state space of the hidden variables is discrete, while the
observations themselves can either be discrete (typically generated fram a categorical distribution) or continuous (typically from a
Gaussian distribution). The parameters of a hidden Markov model are of two types, fransition probabilities and emission probabilities
(also known as output probabilities). The transition probabilities control the way the hidden state at time { is chosen given the hidden
state at time  — 1. J
The hidden state space is assumed to consist of one of J\ possible values. modeled as a categorical distribution. (See the section

below on extensions for other possibilities.) This means that for each of the ]\ possible states that a hidden variable at time ¢ can be

in. there is a transition probability from this state to each of the \ possible states of the hidden variable at time ¢ - ]. for a total of

N2 transition probabilities. Note that the set of transition probabilities for transitions from any given state must sum to 1. Thus, the

N x N matrix of transition probabilities is a Markov matrix. Because any one transition probability can be determined once the

others are known, there are a total ofN(N —_ l)transmon parameters.

In addition, for each of the [\ possible states, there is a set of emission probabilities governing the distribution of the observed
variable at a particular time given the state of the hidden variable at that time. The size of this set depends on the nature of the
observed variable. For example, if the observed variable is discrete with J}f possible values, governed by a categorical distribution,
there will be Jf — ] separate parameters, for a total of N(]M — 1) emission parameters over all hidden states. On the other
hand, if the observed variable is an j}f -dimensional vector distributed according to an arbitrary multivariate Gaussian distribution,
there will be J\f parameters controlling the means and ﬂ;f(]‘/f + 1)]2 parameters controlling the covariance matrix, for a total of

N(]\,{ + w) = le_,f(]\,j + 3)/2 = O(le_,f?) emission parameters. (In such a case. unless the value of

M is small, it may be more practical to restrict the nature of the covariances between individual elements of the observation vector,
&.g. by assuming that the elements are independent of each other, or less restrictively. are independent of all but a fixed number of

adjacent elements.)
;IJ
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Figure 23.4: A first order hidden Markov model with
‘hidden’ variables dom(h,) = {1,...,H}, t =1 :T.
The ‘visible’ variables v; can be either discrete or con-
tinuous.

23.2 Hidden Markov Models

The Hidden Markov Model (HMM) defines a Markov chain on hidden (or ‘latent’) variables hyp. The

observed (or ‘visible') variables are dependent on the hidden variables through an emission p(ve|he). This
defines a joint distribution
plhyr, vir) = ploahy)p(a) Hp (vl )p(Belle 1) (23.2.1)

=2
for which the graphical model is depicted in fig(23.4). For a stationary HMM the transition p(h:|h:—1) and

emission p(wve|hy) distributions are constant through time. The use of the HMM is widespread and a subset
of the many applications of HMMs is given in section(23.5).
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23.2 Hidden Markov Models

The Hidden Markov Model (HMM) defines a Markov chain on hidden (or ‘latent’) variables hyz. The

observed (or ‘visible’) variables are dependent on the hidden variables through an emission p(ve|he). This
defines a joint distribution
- T
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for which the graphical model is depicted in fig(23.4). For a stationary HMM the transition p(h|hs—;) and

emission p(we|hy) distributions are constant through time. The use of the HMM is widespread and a subset
of the many applications of HMMs is given in section(23.5).
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Definition 23.3 (Transition Distribution). For a stationary HMM the transition distribution p(he+1|he) is Definition 23.3 (Transition Distribution). For a stationary HMM the transition distribution p(ht1]he) is
defined by the H x H transition matrix defined by the H x H transition matrix
Ag s = plhogs = e = i) (23.2.2) Ay = plheps = by = 0) (23.2.9)
and an initial distribution and an initial distribution
=p(hy =1). (23.2.3) s =p(hy =1). (23.2.3) -
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- Figure 23.4: A first order hidden Markov model with
‘hidden’ variables dom(h,) = {1,...,H}, t =1 :T.
The ‘visible’ variables v; can be either discrete or con-
tinuous.

23.2 Hidden Markov Models

The Hidden Markov Model (HMIl{) defines a Markov chain on hidden (or ‘latent’) variables hyz. The

observed (or ‘visible') variables are dependent on the hidden variables through an emission p(ve|he). This
defines a joint distribution
plhyr, vir) = ploahy)p(a) Hp (vl )p(Belle 1) (23.2.1)

for which the graphical model is depicted in fig(23.4). For a stationary HMM the transition p(h|h,_;) and
emission p(v¢|h;) distributions are constant through time. The use of the HMM is widespread and a subset
of the many applications of HMMs is given in section(23.5).
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23.2 Hidden Markov Models

The Hidden Markov Model (HMM) defines a Markov chain on hidden (or ‘latent’) variables hyz. The

observed (or ‘visible’) variables are dependent on the hidden variables through an emission p(ve|he). This
defines a joint distribution
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for which the graphical model is depicted in fig(23.4). For a stationary HMM the transition p(h,|h,_;) and
emission p(wvy|h) distributions are constant through time. The use of the HMM is widespread and a subset
of the many applications of HMMs is given in section(23.5).
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Definition 23.4 (Emission Distribution). For a stationary HMM and emission distribution p(v|hs) with Definition 23.4 (Emission Distribution). For a stationary HMM and emission distribution p(v|hs) with
discrete states ve € {1,...,V}, we define a V' x H emission matrix discrete states ve € {1,...,V}, we define a V' x H emission matrix
Bij =ploe =il =3) (23.2.4) Bij =p(ve =i|hy =34) (23.2.4)
For continuous outputs, he selects one of H possible output distributions p(ve|he), he € {1,... . H}. For continuous outputs, ke selects one of H possible output distributions p(ve|he), he € {1,... . H}.
In the engineering and machine learning communities, the term HMM typically refers to the case of discrete In the engineering and machine learning communities, the term HMM typically refers to the case of discrete
variables fi;, a convention that we adopt here. In statistics the term HMM often refers to any model with variables h;, a convention that we adopt here. In statistics the term HMM often refers to any model with
the independence structure in equation (23.2.1), regardless of the form of the variables h: (see for example the independence structure in equation (23.2.1), regardless of the form of the variables h; (see for example
[57]). [57]).
23.2.1 The classical inference problems 23.2.1 The classical inference problems
The common inference problems in HMMSs are summarised below: The common inference problems in HMMs are summarised below:
Filtering (Inferring the present) p(he|vi:t) | Filtering (Inferring the present) p(he|vi:e) 1
Prediction (Inferring the future)  p(he|vis) t>s Prediction (Inferring the future) p(hf\‘vl{g) t>s
Smoothing (Inferring the past) p(he|viw) t<u Smoothing (Inferring the past) ~ p(he|viw) t<u
Likelihood plvrr) Likelihood plwLT)
Most likely Hidden path (Viterbi alignment) argmax p(hy.ployr) Most likely Hidden path (Viterbi alignment) argmax p(hyr|vyr)
hyr hyr
The most likely hidden path problem is termed Viterbi alignment in the engineering and speech recognition The most likely hidden path problem is termed Viterbi alignment in the engineering and speech recognition
literature. All these classical inference problems are computationally straightforward since the distribution B literature. All these classical inference problems are computationally straightforward since the distribution
is singlv-connected. so that anv standard inference method can be adopted for these problems. The factor i is singlv-connected. so that anv standard inference method can be adopted for these problems. The factor Ad|
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Detecting Social Signals: Gestures and Posture
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Definition 23.4 (Emission Distribution). For a stationary HMM and emission distribution p(v|hs) with
discrete states v € {1,...,V}, we define a V x H emission matrix
Bij = p(ve =il = j) (23.2.4)
For continuous outputs, he selects one of H possible output distributions p(ve|he), he € {1,... . H}.
In the engineering and machine learning communities, the term HMM typically refers to the case of discrete
variables fi;, a convention that we adopt here. In statistics the term HMM often refers to any model with
the independence structure in equation (23.2.1), regardless of the form of the variables h: (see for example
[57]).
23.2.1 The classical inference problems
The common inference problems in HMMSs are summarised below:
Filtering (Inferring the present) p(he|vi:t) |
Prediction (Inferring the future)  p(he|vis) t>s
Smoothing (Inferring the past) p(he|viw) t<u
Likelihood plvrr)
Most likely Hidden path (Viterbi alignment) argmax p(hir|err)
hyr
The most likely hidden path problem is termed Viterbi alignment in the engineering and speech recognition
literature. All these classical inference problems are computationally straightforward since the distribution
is singlv-connected. so that anv standard inference method can be adopted for these problems. The factor &d|
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® Gestures:
--not many studies yet interpreting them as social signals
--several studies: gestures as means of input
(special example: touch interfaces)
--other study: automatic interpretation of sign language

® Gesture recognition: main challenges:

--detecting gesture-relevant body parts: select feature spaces, e.g. via
++histograms of oriented gradients
++etc.

--modeling temporal dynamic e.g. via:
++Hidden Markov Models (HMMs)
++Conditional Random Fields (CRFs)
++Dynamic Time Warping (DTW)

K



Detecting Social Signals: Gesture and Posture

Detecting Social Signals: Gaze and Face

® posture: Mostly for surveillance and activity recognition; Studies aiming at
social signal interpretation:

-- e-learning for children
--recognize affective states
—influence of culture on affective postures

Detecting Social Signals: Gaze and Face

® First: problems: (repetition)
--Face Detection

-—-Extract Features from faces; Gaze: analyze direction of eyes
--Analyze temporal sequences

® then: interpret instances as social signals / behavioral cues

Detecting Social Signals: Gaze and Face

® AU: smallest discernable temporal feature sequence: sequence of

geometry or appearance features (modelled e.g. via Dynamic Bayesian
Networks (DBN))

® Detection: example: basic integrative methods based on optical flow on
detected faces:

--optical flow: motion pattern of picture elements (e.g. pixels):
represented by vector field of velocity V(x,y,t) of intensity:

I(x+dx,y+dy,t+dt)= I(x,y,r)Jrgdera—Ider6—Idf+0(d2)
Ox v ot

- gV +gV +g:0

ax Yo (optical flow equation)

-- estimate algorithmic approximation e.g.
with Lucas—Kanade method
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Detecting Social Signals: Gaze and Face
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® Detection: example: basic integrative methods based on optical flow on
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Detecting Social Signals: Gaze and Face

Detecting Social Signals: From Audio

® AU: smallest discernable temporal feature sequence: sequence of
geometry or appearance features (modelled e.g. via Dynamic Bayesian
Networks (DBN))

® Detection: example: basic integrative methods based on optical flow on
detected faces:
--optical flow: motion pattern of picture elements (e.g. pixels):
represented by vector field of velocity V(x,y,t) %f intensity:

I(x+dx,y+dy,t+dt)= I(x,y,r)+gdx+a—fdy+a—Idr+O(d2)
Ox ay ot

i
- gV +gV +aI:0

ax ey Y Bt (optical flow equation)

-- estimate algorithmic approximation e.g.
with Lucas—Kanade method

Detecting Social Signals: From Audio

® Vocal features: up to now: mestly investigated for speech detection

¢ Prosody: pitch, tempo, energy
--pitch: first fundgmental frequency (15t maximum in Fourier
% transform (e.g. 30ms frames)
--tempo: vowels / sec. ; vowel: phonetically relevant unit

—-energy E of signal s(t): - Z“_s(ri)2

® Few efforts so far in analysis of non-linguistic vocalizations
--example: laughter detection (e.g. via SVMs)
and linguistic vocalizations

® silence detection: e.g. via energy as feature (often as by-product of
speaker diarization)

Social Signal Processing Chain

® Vocal features: up to now: mostly investigated for speech detection

® Prosody: pitch, tempo, energy
--pitch: first fundamental frequency (1% maximum in Fourier
transform (e.g. 30ms frames)
-—-tempo: vowels / sec. ; vowel: phonetically relevant unit

-—energy E of signal s(t): g - Z-S(t")z N

® Few efforts so far in analysis of non-linguistic vocalizations
-—-example: laughter detection (e.g. via SVMs)
and linguistic vocalizations

® silence detection: e.g. via energy as feature (often as by-product of
speaker diarization)

Preprocessing
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Data Person Multimedal
Capture _ ™| Detection Behavioural :

Streams
\‘

| Multimodal ' ® E
| yuinodt  [Bagowd | ® B o] s
P Streams Extraction Behavioural ;| Understanding Behaviours
Cues :
H Context :
i| Understanding [}

Fig. 6. Machine analysis of social signals and behaviours: a general scheme. The
process includes two main stages: The preprocessing, takes as input the recordings of
social interaction and gives as ontput the multimodal behavioural streams associated
with each person. The social intemetion analysis maps the multimodal behavioural
streams into soclal signals and social behaviours.
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Social Situation Models as Models of Social Context Social Situation Models and Agents

SociakSituation: J Social Networking J

A

Mobile Social Networking J [ Decentralized Social Networking ]
[ Personal SN Agents]]]

Individual ContextJ Social Context J'/'/ ‘
2 N

[ Social Situation

Co-located social interaction
with full mutual awareness
B

Simplified Social Situation Model: J

® Participating persons: P: set of IDs

® Spatio-temporal reference: X: sub-set of & x 2

® 5> s=(P X

Models

3/25 4/25
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Experiment Results

Experiment data: Manual annotation
K

| S| = 321307 (06, dd) pairs corresponding to ,in a social situation*
| SO | = 398335 (06, dd) pairs corresponding to ,not in a social situation*
Example:

| S9
| 59
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Applied Informatics /
Cooperative Systems
AICOS

Gaussian Mixture Model (3 Gaussians)
Gaussian Mixture Model (5 Gaussians)
Gaussian Mixture Model (7 Gaussians) Iy
Naive Bayes

Support Vector Machine (Polyn. Kernel)

74,34 %
74,67 %
74,59 %
65,45 %
77,81 %

(*) w. 10-fold cross validation
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