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EM-algorithm: General View

¢ Having latent variables Z , ML becomes

Inp(X|0) = In {ZP(X-. ZIG)}
N

Z

® Summation inside In > Problems |

® If we knew the complete dataset {X, Z} (and thus the distribution
(X, Z|8) ), we could use ML to solve for & with p(X, Z|8) directly (which is

easy, as we will see, because p(X, Z|&) is of exponential family (the functional
form is known!!)

K
® we only know p(Z|X,8) (= responsibilities, as we will see) - compute

expectation of (unknown) quantity p(X, Z|8) or even better of the quantity
Inp(X,Z|8)
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° Having latent variables Z , ML becomes L] alternating EM:
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® If we knew the complete dataset {X, Z} (and thus the distribution
p(X, Z|8) ), we could use ML to solve for & with p(X, Z|8) directly (which is
easy, as we will see, because p(X, Z|8) is of exponential family (the functional

form is known!!)

® we only know p(Z[TX,B) (= responsibilities, as we will see) = compute
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® alternating EM: ® applied to GMM:
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Complex Network Properties Mean Average Path Length
® “Small World Effect”: Itn) “small” = Ifn)e O(log(n))
® undirected graph:
1
- | | o -4,
Now: investigate a series of properties / classification axes of sn(n+1) 4 =
complex real world networks (mostly compared to random NW) B é—"

formula also counts 0 distances fromitoi: “2n(n+1) =% n(n-1) +n

¢ Expression allowing for disconnected components (where d;=» can
occur): harmonic mean:
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® “Small World Effect” I(m) “small” = I(n)e O(log(n))

® undirected graph:

1 k

(= — 1 N"a,
in(n+1) ; !

formula also counts 0 distances fromitoi: 2 n(n+1) =% n(n-1) +n

® Expression allowing for disconnected components (where d;=« can
occur): harmonic mean:

Transitivity / Clustering Coefficient

® “Small World Effect”: Itn) “small” = Ifn)e O(log(n))

® undirected graph:

1 i

(" - 54— di-'
in(n+1) LZJ: !

formula also counts 0 distances fromitoi: “2n(n+1) =% n(n-1) +n

¢ Expression allowing for disconnected components (where d;== can
occur): harmonic mean:

Transitivity / Clustering Coefficient

® Clustering coefficient (whole graph):

C=(Cl— 3x number of triangles in the network

T T P(FOAF)
number of connected triples of vertices

%k 6x number of triangles in the network

number of paths of length two

° Clustering coefficient (Watts-Strogatz-version, for node i):

number of triangles connected to vertex i

v

number of triples centered on vertex i

_ | egg [ ViV € Nij (see Introduction , k; = degree of node i)
ki(k; -1)
2

Clustering coefficient (Watts-Strogatz-version, for whole graph):

. 1 .
C=(C2= ;Z(

mean of ratio instead of ratio of means

¢ Clustering coefficient (whole graph):

C=Cl— 3x number of triangles in the network

- - PFOAF)
number of connected triples of vertices

6% number of triangles in the network

number of paths of length two &

¢ Clustering coefficient (Watts-Strogatz-version, for node i):

number of triangles connected to vertex i

i

number of triples centered on vertex i

_ [ e [ Vieo v € Ni| (see Introduction , k; = degree of node i)
ki (ki -1)
2

Clustering coefficient (Watts-Strogatz-version, for whole graph):

‘ 1 .
C=(C= ;ZC;

mean of ratio instead of ratio of means
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Transitivity / Clustering Coefficient

® Clustering coefficient (whole graph):

p(FOAF)

; 3x number of triangles in the network
C=C0-= ges _
number of connected triples of vertices
6 x number of triangles in the network
- number of paths of length two

° Clustering coefficient (Watts-Strogatz-version, for node i):

C number of triangles connected to vertex i
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number of triples centered on vertex i
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2
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C= (- 3% mumber of triangles in the network
number of connected triples of vertices
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- number of paths of length two
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® Clustering coefficient (whole graph):
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¢ Clustering coefficient (whole graph):

; 3x number of triangles in the network
C = C( 1)— g _ : P(FOAF)
number of connected triples of vertices
6% number of triangles in the network

number of paths of length two

¢ Clustering coefficient (Watts-Strogatz-version, for node i):

number of triangles connected to vertex i

i
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Example:

i i . 3x1
(1) — 3x number of trlangles-m the netvu.ork _ —0.375
number of connected triples of vertices

1 number of triangles connected to vertex i
C2==>Ci with = ng :
n S number of triples centered on vertex i

C=1/5 (1 + 1+ 1/6+0 + 0) = 13/30 = 0.433333

Transitivity / Clustering Coefficient

Example:

: i . 3x1
(1) — 3x number of trlangles.m the netvulork —0.375
number of connected triples of vertices

1 number of triangles connected to vertex i
C2==>Ci with = ng :
n S number of triples centered on vertex i

CP=1/5(1+1+1/6+0+0)=13/30=0.433333 &

Example:

(1) — 3x number of triangles in the network  _ 3xl - 0375

number of connected triples of vertices

number of triples centered on vertex i

1 number of triangles connected to vertex 7
Co=~ Z Ci  with ;= g
T

CP=1/5(1+1+1/6+0+0)=13/30=0.433333

network type n m z £ o | c [ r | Ref{s).
film actors undirected 449013 25516482 [ 113.43 348 23 | 0.20 0.78 0.208 | 20, 416
company dl}gscbors undirected T6T3 551392 14.44 4.60 - 059 088 0.276 105, 323
math coauthorship undirected 251330 496480 392 757 - | 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.363 | 311, 313

% | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.088 | 0.60 0.127 | 311, 313

§ telephone call graph undirected 47 000 000 80000000 3.16 21 89
email messages directed 59012 86 300 1.44 495 | 15/20 0.16 136
email address books directed 16881 57029 3.38 522 - | 0ar 0.13 0.002 | 321
student relationships | undirected 573 477 166 | 16.01 - | 0.005 | 0.001 | —0.020 | 45
sexual contacts undirected 2810 32 265, 266

= | WWW nd._edu directed 269504 1497135 555 | 1127 | 21724 | 011 0.29 —0.067 | 14,34

2 | WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 2.1/27 4

g citation network directed 783330 6716198 857 3.0/- 51

'-3 Roget’s Thessurus directed 1022 5103 4.99 487 - | 013 015 01537 | 244

™| word coccurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10697 319002 508 33 25 | 0.035 | 0.30 —0.180 | 26, 148

F | power grid undirected 4941 6504 267 | 1899 - | 0.10 0080 | —0.003 | 416

W | train routes undirected 58T 19603 66.79 216 - 0.69 —0.033 | 366

_g' software packages directed 1430 1723 1.20 242 | 16714 | 0070 | 0082 | —0.016 | 318

§ software classes directed 1377 2213 1.61 151 - | 0033 | 0.012 | —-0.119 | 395

= electronic circuits undirected 24007 53248 434 11.05 3.0 0.010 0.030 —0.154 155
peer-to-pesr network | undirected 830 1206 147 4.28 21 | 0012 | 0011 | —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 2.2 | 0.090 | 0.67 —0.240 | 214

E protein interactions undirected 2115 2240 212 680 24 | 0072 | 0.071 —0.136 | 212

E marine food web directed 135 508 443 205 - 0.16 0.23 —0.263 204

-_E- freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | —0.326 | 272
neural network directed 307 21359 7.68 397 - | 0.8 0.28 —0.226 | 416, 421

3LE IT Basic statistics for & number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or “~" if not; injfout
sments are given for directed graphs); clustering coefficent C1) from Eq. (3); clustering coefficient €' from Eq. (6); and %gw correlation coefficent r, Seq
last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.
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network type n m z [ o | o™ c@ r | Ref{s). network type n m z £ o | [ r | Ref{s).
film actors undirected 449013 25516482 | 11343 348 23 | 0.20 0.78 0.208 | 20, 416 film actors undirected 449013 255164582 | 113.43 348 2.3 | 0.20 0.78 0.208 | 20, 416
company directors undirected TET3 55302 14.44 4.60 - | 059 0.88 0.276 | 105, 322 company directors undirected 7673 551302 14.44 4.60 - | 059 088 0.276 | 105, 323
math coauthorship undirected 252339 496489 392 757 - | 015 0.34 0.120 | 107, 182 math coauthorship undirected 253339 496489 3.92 78T -1 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.363 | 311, 313 physics coauthorship | undirected 52000 245 300 9.27 619 - | 045 056 0.363 | 311, 213

4 | biology cosuthorship | undirected 1520251 11803064 1553 402 — | 0.088 | 0.60 0127 | 311, 313 % | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.028 | 0.60 0.127 | 311, 213

§ telephone eall graph undirected 47000000 20000000 3.16 21 8,0 § telephone call graph undirected 47000000 B0 000000 3.16 21 20
email messages directed 50012 86 300 144 4.95 15720 0.16 136 email messages directed 59012 86 300 144 495 1.5/2.0 0.16 136
email address books directed 16881 57029 3318 5.22 - | 07 0.13 0.092 | 321 email address books directed 168381 7029 318 522 - | 07 0.1% 0.002 | 321
student relstionships | undirected 573 477 1.66 16.01 - | 0.005 | 0.001 -0.020 45 student relationships | undirected 573 477 1.66 16.01 - 0.005 0.001 —0.020 | 45
sexual contacts undirected 2810 32 265, 266 sexual contacts undirected 2810 12 265, 266

= | WWW nd.edu directed 260504 1497135 555 1127 | 21724 | 0.11 0.29 —0.067 14, 34 = | WWW nd.edu directed 269504 1497135 5.55 1127 | 21724 | 011 0.29 —0.067 14, 34

% WWW Altavista directed 203540046 | 2130000000 1046 | 1618 | 21/27 74 -% WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 21727 74

g | citation network directed 783339 6716198 BET 3.0/- 51 E | citation network directed 783330 6716198 857 3.0/- 51

~§ Roget's Thesaurus directed 1022 5103 499 487 - 013 0.15 0157 | 244 ~3 Roget’s Thessurus directed 1022 5103 4.99 487 -1 013 0.15 0157 | 244

| word cooceurrence undirected 460902 7000000 70.13 27 0.44 119, 157 | word co-oceurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10 607 11902 598 .31 25 | 0035 [ 029 -0.130 | 86, 148 Internet undirected 10 697 11002 5.98 .31 25 | 0.035 | 0.39 —-0.180 | 86, 148

3 power grid undirected 4041 6504 267 18.99 - | 0.10 0.080 | —0.003 | 416 3 power grid undirected 4941 6504 267 18.99 - | 0.10 0.050 | —0.003 | 416

"gb train routes undirected 5ET 19603 66.70 216 - 0.69 —0.033 166 'é'o train routes undirected 587 19 603 66.79 216 - 0.69 —0.033 166

S | software packages directed 1439 1721 1.20 242 | 1.6/14 | 0070 [ 0082 | —D016 | 318 g | software packages directed 1439 1723 1.20 242 | 1.6/14 | 0070 | 0082 | —0.016 [ 38

‘g software classes directed 1377 2213 1.61 1.51 - | 0.033 | 0.012 —0.110 | 305 'g software classes directed 1377 2213 1.61 151 - | 0.033 | 0.012 —0.110 | 303

= | electronic circuits undirected 24007 53248 434 | 1108 30 [ 0.010 [ 0.030 | —0.154 | 155 = | electronic circuits undirected 24007 53245 434 | 1108 30 | 0010 | 0030 | —0.154 [ 155
peer-to-peer network | undirected 880 1206 147 4.28 21 | 0.012 | 0.011 —0.366 | 6, 354 peer-to-peer network | undirected BR0 1206 147 428 21 | 0.012 | 0,011 —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 22 | 0.000 [ 0.67 -0240 | 214 metabolic network undirected 65 3626 9.64 2.56 2.2 | 0.080 | 0.67 —0.240 | 214

E protein interactions undirected 2115 2240 212 650 24 | 0072 [ 0071 | —0.136 | 212 *:_! protein interactions undirected 2115 2240 212 680 24 | 0072 | 0071 | 0136 [ 212

Z | marine food web directed 135 502 443 2.05 - | 018 0.23 —0.263 | 204 Z | marine food web directed 135 508 4.43 2.05 - | 016 0.23 —0.263 | 204

-_§ freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | -0.326 272 -_§ freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | -0.326 272
neural network directed 307 21359 .68 397 - | 0.18 0.28 —0.226 | 416, 421 neural network directed 307 2159 7.68 397 - | 018 0.28 —0.226 | 416, 421

ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1+ 3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1

iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law {(or “- if not; infout iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or “~" if not; injfout
onents sre given for directed graphs); clustering coefficent €'} from Eq. (3); clustering coefficient C'%) from Eq. (6); and degree correlation coefficient », Se«  onents are given for directed graphs); clustering coefficient ¢'') from Eq. (3); clustering coefficient €'} from Eq. (6); and degree correlation coefficient r, Sec
last column gives the citation{s) for the network in the bibliography. Blank entries indicate unavailable data. last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

(1] [1]

network type n m z [ o | o™ c@ r | Ref{s). network type n m z £ o | [ r | Ref{s).
film actors undirected 440013 25516482 | 11343 A48 23 | 0.20 0.78 0.208 | 20, 416 film actors undirected 449013 25516482 [ 113.43 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected TET3 55302 14. 4.60 - | 059 0.88 0.276 | 105, 322 company directors undirected 7673 551302 14.44 4.60 - | 059 088 0.276 | 105, 323
math coauthorship undirected 252339 496489 392 757 - | 015 0.34 0120 | 107,182 math coauthorship undirected 253339 496489 3.92 78T -1 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 0.27 6.10 - | 045 0.56 0.363 | 311, 313 physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.363 | 311, 313

4 | biology cosuthorship | undirected 1520251 11803064 1558 4.02 - | 0.088 [ 0.60 0127 | 311, 313 % | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.088 | 060 0.127 | 311, 313

§ telephone eall graph undirected 47000000 20000000 3.16 21 8,0 § telephone call graph undirected 47000000 B0 000000 3.16 21 I% 20
email messages directed 50012 86 300 144 4.95 15720 0.16 136 email messages directed 59012 86 300 144 495 1.5/2.0 0.16 136
email address books directed 16881 57029 3318 5.22 - | 07 0.13 0.092 | 321 email address books directed 168381 7029 318 522 - | 07 0.1% 0.002 | 321
student relationships | undirected 573 477 1.66 | 16,01 - | 0.005 | 0.0001 [ —0D.020 | 45 student relationships | undirected 573 477 166 | 16.01 - | 0.005 | 0.001 | —0.020 [ 45
sexual contacts undirected 2810 32 265, 266 sexual contacts undirected 2810 32 265, 266

= | WWW nd.edu directed 260504 1497135 555 1127 | 21724 | 0.11 0.29 —0.067 14, 34 = | WWW nd.edu directed 269504 1497135 5.55 1127 | 21724 | 011 0.29 —0.067 14, 34

% WWW Altavista directed 203540046 | 2130000000 1046 | 1618 [ 21727 74 -% WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 2.1/27 4

g | citation network directed 783339 6716198 857 3.0/- 51 E | citation network directed 783330 6716198 857 3.0/- ki

\3 Roget's Thesaurus directed 1022 5103 499 4.87 - | 013 0.15 0157 | 244 ~3 Roget’s Thesaurus directed 1022 5103 4.99 487 -1 013 0.15 0157 | 244

| word cooceurrence undirected 460902 7000000 70.13 27 0.44 119, 157 | word co-oceurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10697 31002 508 a3 25 | 0.035 | 0.30 —0.130 | 26, 148 Internet undirected 10697 319002 508 33 25 | 0.035 | 0.30 —0.180 | 26, 148

3 power grid undirected 4041 6504 267 18.99 - | 0.10 0.080 | —0.003 | 416 3 power grid undirected 4941 6504 267 18.99 - | 0.10 0.050 | —0.003 | 416

"gb train routes undirected 5ET 19603 66.70 216 - 0.69 —0.033 166 'é’o train routes undirected 587 19 603 66.79 216 - 0.69 —0.033 166

S | software packages directed 1439 1723 1.20 242 | 1.6/14 | 0070 [ 0082 | —D016 | 318 g | software packages directed 1430 1723 1.20 242 | 1.6/14 | 0070 | 0082 | —0.016 [ 38

‘g software classes directed 1377 2213 1.61 1.51 - | 0033 [ 0012 | -0.110 | 305 '§ software classes directed 1377 2213 1.61 151 - | 0033 | 0.012 | —-0.119 | 395

< | electronic circuits undirected 24007 53248 4.4 11.05 30 | 0.010 | 0.030 —0.154 155 = | electronic circuits undirected 24007 53248 434 11.05 30 | 0.010 | 0.030 —0.154 155
peer-to-peer network | undirected 880 1206 147 4.28 21 | 0.012 | 0.011 —0.366 | 6, 354 peer-to-peer network | undirected BR0 1206 147 428 21 | 0.012 | 0,011 —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 22 | 0.000 [ 0.67 -0240 | 214 metabolic network undirected 65 3626 9.64 2.56 2.2 | 0.080 | 0.67 —0.240 | 214

E protein interactions undirected 2115 2240 2.12 6.80 24 | 0072 | 0071 | 0156 | 212 @ protein interactions undirected 2115 2240 212 650 24 | 0072 | 0071 | 0156 [ 212

Z | marine food web directed 135 502 443 2.05 - | 018 0.23 —0.263 | 204 Z | marine food web directed 135 508 4.43 2.05 - | 016 0.23 —0.263 | 204

-_§ freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | -0.326 272 -_§ freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | -0.326 272
neural network directed 307 21359 .68 397 - | 0.18 0.28 —0.226 | 416, 421 neural network directed 307 2159 7.68 397 - | 018 0.28 —0.226 | 416, 421

ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1+ 3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1

iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law {(or “- if not; infout iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or “~" if not; injfout
onents sre given for directed graphs): clustering coeffident C'*) from Eq. {2); clustering coefficient C'®) from Eq. (6): and degree correlation coefficient », Se«  onents are given for directed graphs); clustering coefficent ') from Eq. (3); clustering coefficient C*) from Eq. (6); and degree correlation coefficient r, Sec
last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data. last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

(1] [1]



network type n m z [ o | o™ c@ r | Ref{s). network type n m z £ o | [ r | Ref{s).
film actors undirected 449013 25516482 | 11343 348 23 | 0.20 0.78 0.208 | 20, 416 film actors undirected 449013 255164582 | 113.43 348 2.3 | 0.20 0.78 0.208 | 20, 416
company directors undirected TET3 55302 14.44 4.60 - | 059 0.88 0.276 | 105, 322 company directors undirected 7673 551302 14.44 4.60 - | 059 088 0.276 | 105, 323
math coauthorship undirected 252339 496489 392 757 - | 015 0.34 0.120 | 107, 182 math coauthorship undirected 253339 496489 3.92 78T -1 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.363 | 311, 313 physics coauthorship | undirected 52000 245 300 9.27 619 - | 045 056 0.363 | 311, 213

4 | biology cosuthorship | undirected 1520251 11803064 1553 402 — | 0.088 | 060 0127 | 311, 313 % | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.028 | 0.60 0.127 | 311, 213

§ telephone eall graph undirected 47000000 20000000 3.16 21 k 8,0 § telephone call graph undirected 47000000 B0 000000 3.16 21 20
email messages directed 50012 86 300 144 4.95 15720 0.16 136 email messages directed 59012 86 300 144 495 1.5/2.0 0.16 136
email address books directed 16881 57029 3318 5.22 - | 07 0.13 0.092 | 321 email address books directed 168381 7029 318 522 - | 07 0.1% 0.002 | 321
student relstionships | undirected 573 477 1.66 16.01 - | 0.005 | 0.001 -0.020 45 student relationships | undirected 573 477 1.66 16.01 - 0.005 0.001 —0.020 | 45
sexual contacts undirected 2810 32 265, 266 sexual contacts undirected 2810 12 265, 266

= | WWW nd.edu directed 260504 1497135 555 1127 | 21724 | 0.11 0.29 —0.067 14, 34 = | WWW nd.edu directed 269504 1497135 5.55 1127 | 21724 | 011 0.29 —0.067 14, 34

% WWW Altavista directed 203540046 | 2130000000 1046 | 1618 2,%‘2 7 74 -% WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 21727 74

g | citation network directed 783339 6716198 BET 3.0/- 51 E | citation network directed 783330 6716198 857 3.0/- 51

~§ Roget's Thesaurus directed 1022 5103 499 487 - 013 0.15 0157 | 244 ~3 Roget’s Thessurus directed 1022 5103 4.99 487 -1 013 0.15 0157 | 244

| word cooceurrence undirected 460902 7000000 70.13 27 0.44 119, 157 | word co-oceurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10 607 11902 598 .31 25 | 0035 [ 029 -0.130 | 86, 148 Internet undirected 10 697 11002 5.98 .31 25 | 0.035 | 0.39 —-0.180 | 86, 148

3 power grid undirected 4041 6504 267 18.99 - | 0.10 0.080 | —0.003 | 416 3 power grid undirected 4941 6504 267 18.99 - | 0.10 0.050 | —0.003 | 416

"gb train routes undirected 5ET 19603 66.70 216 - 0.69 —0.033 166 'é'o train routes undirected 587 19 603 66.79 216 - 0.69 Jh.IJBQ 166

S | software packages directed 1439 1721 1.20 242 | 1.6/14 | 0070 [ 0082 | —D016 | 318 g | software packages directed 1439 1723 1.20 242 | 1.6/14 | 0070 | 0082 | —0.016 [ 38

‘g software classes directed 1377 2213 1.61 1.51 - | 0.033 | 0.012 —0.110 | 305 'g software classes directed 1377 2213 1.61 151 - | 0.033 | 0.012 —0.110 | 303

= | electronic circuits undirected 24007 53248 434 | 1108 30 [ 0.010 [ 0.030 | —0.154 | 155 = | electronic circuits undirected 24007 53245 434 | 1108 30 | 0010 | 0030 | —0.154 [ 155
peer-to-peer network | undirected 880 1206 147 4.28 21 | 0.012 | 0.011 —0.366 | 6, 354 peer-to-peer network | undirected BR0 1206 147 428 21 | 0.012 | 0,011 —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 22 | 0.000 [ 0.67 -0240 | 214 metabolic network undirected 65 3626 9.64 2.56 2.2 | 0.080 | 0.67 —0.240 | 214

E protein interactions undirected 2115 2240 212 650 24 | 0072 [ 0071 | —0.136 | 212 *:_! protein interactions undirected 2115 2240 212 680 24 | 0072 | 0071 | 0136 [ 212

Z | marine food web directed 135 502 443 2.05 - | 018 0.23 —0.263 | 204 Z | marine food web directed 135 508 4.43 2.05 - | 016 0.23 —0.263 | 204

-_§ freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | -0.326 272 -_§ freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | -0.326 272
neural network directed 307 21359 .68 397 - | 0.18 0.28 —0.226 | 416, 421 neural network directed 307 2159 7.68 397 - | 018 0.28 —0.226 | 416, 421

ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1+ 3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1

iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law {(or “- if not; infout iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or “~" if not; injfout
onents sre given for directed graphs); clustering coefficent €'} from Eq. (3); clustering coefficient C'%) from Eq. (6); and degree correlation coefficient », Se«  onents are given for directed graphs); clustering coefficient ¢'') from Eq. (3); clustering coefficient €'} from Eq. (6); and degree correlation coefficient r, Sec
last column gives the citation{s) for the network in the bibliography. Blank entries indicate unavailable data. last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

(1] [1]

Degree Distribution

network type n m z [ o | o™ c@ r | Ref{s).
film actors undirected 449013 25516482 | 11343 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected TET3 55302 14.44 4.60 - | 059 0.88 0.276 | 105, 322
math coauthorship undirected 252339 496489 3.02 757 - | 015 0.34 0.120 | 107, 182 ° .
physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.363 | 311, 313 Notation:
4 | biology cosuthorship | undirected 1520251 11803064 1553 402 — | 0.088 | 0.60 0127 | 311, 313 _ _ - :
% | telophone call graph | undirected | 47000000 [ 0000000 | 3.6 21 5,0 p(k) = px = fraction of nodes having degree k
email messages directed 50012 86 300 144 4.95 15720 0.16 136
email address books directed 16881 57029 3318 5.22 - | 07 0.13 0.092 | 321 ° ) ) . .
student relstionships | undirected 573 477 166 | 16.01 ~ | 0005 | 0001 | D020 | 45 Cumulative distribution: 1}
sexual contacts undirected 2810 32 265, 266 o0
= | WWW nd.edu directed 260504 1497135 555 1127 | 21724 | 0.11 0.29 —0.067 14, 34 P _
2| WWW Altavists directed 203540046 | 2130000000 | 1046 | 1618 | 2.1/27 I 74 k= Z: Pre.
g | citation network directed 782330 6716108 | 857 3.0/ 351 Tk
< | Roget's Thesaurus directed 1022 5103 499 487 - 013 0.15 0157 | 244
| word cooceurrence undirected 460902 7000000 70.13 27 0.44 119, 157
Internet undirected 10 697 31002 598 .31 25 | 0035 [ 029 -0.130 | 86, 148
g | power grid undirected 1941 6504 267 | 1800 - | 010 | ooso | 0003 | 418 . power law:
"gb train routes undirected 5ET 19603 66.70 216 - 0.69 —0.033 166
© | software packages directed 1439 1723 1.20 242 1.6/14 0.070 | 0.082 —0.016 | 318 P —~ k =
'g software classes directed 1377 2213 1.61 1.51 — | 0033 | 0.012 | -0.110 | 395 pk : 00
< | electronic circuits und?!ectt.’d 24007 53248 4.4 11.05 30 | 0.010 | 0.030 —0.154 155 N o L — (Q‘— l)
peer-to-peer netwark | undirected 880 1206 | 14y | aos 21 | om2 | o011 | —oses | 6 w4 s> P~ k ~k
metabolic network undirected 765 3686 9.64 2.56 22 | 0.000 | 0.67 -0240 | 214
E protein interactions undirected 2115 2240 212 650 24 | 0072 [ 0071 | —0.136 | 212 k'=k
Z | marine food web directed 1335 508 443 2.05 - | 018 0.23 -0.263 | 204
-_§ freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | -0.326 272 ® exponentlal -
neural network directed 307 21359 .68 397 - | 0.18 0.28 —0.226 | 416, 421 .
) —k/k
ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1 pk ~ e 00 00
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law {(or “- if not; infout ’
onents sre given for directed graphs): clustering coefficent C'*) from Eq. (3); clustering coefficient C'*) from Eq. (6): and degree correlation coefficient r, Sed 9 PL = Z pk ~ Z e_k /” ~ e_k/h-
last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

[1] k'=k kf=k



Degree Distribution

Degree Distribution

® Notation:
p(k) = px = fraction of nodes having degree k
® Cumulative distribution:
o0

k!'=k k

° power law:
pr ~ k™
5> P~ Z [N Tl
ki=k

® exponential:

Dk ~ E‘_k-""‘h"

5 Pi=

Z i ~ Z Kk ., o—k/x

kf=k

Degree Distribution

® Notation:
p(k) = px = fraction of nodes having degree Kk
® Cumulative distribution:
oo
k'=k
¢ power law:
P~k
> Pk ~ Z A’ ~ k(1)
AT
® exponential:
Pk~ e—k;‘h‘

k'=k k'=k
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“‘Power law” == “Scale free”
10 E=TT T 10° g
= E mﬁr \ 3 ® f(x) = x% is only solution to functional equation formalizing scale
107 F \ . 2 . E freedom f(ax) = b f(x)
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Degree Distribution

Degree Distribution

“Power law” == “Scale free”:

¢ f(x)%= x@ is only solution to functional equation formalizing scale
freedom f(ax) = bf(x)

® in other words: change of scale = f still ,looks the same*

® other point of view:
Although we can compute the expectation E(k)=2k k ke ifa=1,
the variance (error bars) Var(k)= Ek (k-E(k))? k@

diverges = we ,cannot be shure about k*
- no characteristic scale“ = ,scale free“

“Power law” == “Scale free”:

® f(x) = x® is only solution to functional equation formalizing scale
freedom f(ax) = b f(x)

® in other words: change of scale = f still looks the same*

® other point of view:
Although we can compute the expectation E(k)=2k kka ifa=1,
the variance (error bars) Var(k)= Ek (k-E(K))? k= g

diverges = we ,cannot be shure about k*
- ,no characteristic scale* = ,scale free“



