Script generated by TTT

Title: profile1 (20.06.2013)

Date: Thu Jun 20 11:09:16 CEST 2013

Duration: 92:32 min

Pages: 61

GMM-Basics

Maximum likelihood (one multivariate Gaussian)

$$p(\mathbf{x}|\theta) = \mathcal{N}(\mathbf{x}|\underline{\mu}, \underline{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\underline{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \underline{\mu})^{\mathrm{T}} \underline{\Sigma}^{-1} (\mathbf{x} - \underline{\mu})\right\}$$

•Likelihood $L(\mathbf{x}, \theta) = p(\mathbf{x}|\theta)$

Maximum likelihood $\theta_{\text{best}} = \operatorname{argmax}_{\theta} L(\mathbf{x}, \theta)$ = $\operatorname{argmax}_{\theta} \ln L(\mathbf{x}, \theta)$

• Pattern matrix X of N iid measurements (D-dim. pattern vectors \mathbf{x}),

$$\mathbf{X} \,=\, (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\mathrm{T}}$$

$$L(\mathbf{X}, \Theta) = \prod_{i=1}^{N} L(\mathbf{X}_{i}, \Theta) \qquad \ln L(\mathbf{X}, \Theta) = \sum_{i=1}^{N} \ln L(\mathbf{X}_{i}, \Theta)$$

GMM-Basics

Maximum likelihood (one multivariate Gaussian)

$$p(\mathbf{x}|\theta) = \mathcal{N}(\mathbf{x}|\underline{\mu}, \underline{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\underline{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^{\mathrm{T}} \underline{\Sigma}^{-1} (\mathbf{x} - \mu)\right\}$$

•Likelihood $L(\mathbf{x}, \theta) = p(\mathbf{x}|\theta)$

• Maximum likelihood $\theta_{\text{best}} = \operatorname{argmax}_{\theta} L(\mathbf{x}, \theta)$ = $\operatorname{argmax}_{\theta} \ln L(\mathbf{x}, \theta)$

lacktriangle Pattern matrix X of N iid measurements (D-dim. pattern vectors f x),

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\mathrm{T}}$$

$$L(\mathbf{X}, \Theta) = \prod_{i=1}^{N} L(\mathbf{x}_i, \Theta) \qquad \ln L(\mathbf{X}, \Theta) = \sum_{i=1}^{N} \ln L(\mathbf{x}_i, \Theta)$$

GMM-Basics

Maximum likelihood (one multivariate Gaussian)

$$p(\mathbf{x}|\theta) = \mathcal{N}(\mathbf{x}|\underline{\mu}, \underline{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\underline{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \underline{\mu})^{\mathrm{T}} \underline{\Sigma}^{-1}(\mathbf{x} - \underline{\mu})\right\}$$

Likelihood $L(\mathbf{x}, \theta) = p(\mathbf{x}|\theta)$

 Maximum likelihood $\theta_{\text{best}} = \operatorname{argmax}_{\theta} L(\mathbf{x}, \theta)$ = argmax $\rho \ln L(\mathbf{x}, \theta)$

• Pattern matrix X of $\frac{N}{N}$ iid measurements (D-dim. pattern vectors \mathbf{x}),

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\mathrm{T}}$$

$$L(\mathbf{X}, \boldsymbol{\Theta}) = \prod_{i=1}^{N} L(\mathbf{X}_{i}, \boldsymbol{\Theta})^{\mid \zeta_{i} \mid}$$

$$L(\mathbf{X}, \Theta) = \prod_{i=1}^{N} L(\mathbf{x}_{i}, \Theta)^{k_{i}} \qquad \ln L(\mathbf{X}, \Theta) = \sum_{i=1}^{N} \ln L(\mathbf{x}_{i}, \Theta)$$

GMM-Basics

Maximum likelihood (one multivariate Gaussian)

$$\begin{split} \ln L(\mathbf{X}, \boldsymbol{\Theta}) = \ln L(\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \\ & \ln p(\mathbf{X} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln|\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) \end{split}$$

$$\theta_{\text{best}} = \operatorname{argmax}_{\theta} \ln L(\mathbf{x}, \theta) \rightarrow \mu_{\text{best}} : \frac{\partial}{\partial \mu} \ln L(\mathbf{X}, \mu, \Sigma) = 0$$
$$\Sigma_{\text{best}} : \frac{\partial}{\partial \Sigma} \ln L(\mathbf{X}, \mu, \Sigma) = 0$$

GMM-Basics

Maximum likelihood (one multivariate Gaussian)

$$p(\mathbf{x}|\theta) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Likelihood $L(\mathbf{x}, \theta) = p(\mathbf{x}|\theta)$

Maximum likelihood $\theta_{\text{best}} = \operatorname{argmax}_{\theta} L(\mathbf{x}, \theta)$ = argmax $_{\alpha}$ ln $L(\mathbf{x}, \theta)$

• Pattern matrix X of N iid measurements (D-dim. pattern vectors \mathbf{x}),

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\mathrm{T}}$$

$$L(\mathbf{X}, \Theta) = \prod_{i=1}^{N} L(\mathbf{x}_i, \Theta) \qquad \ln L(\mathbf{X}, \Theta) = \sum_{i=1}^{N} \ln L(\mathbf{x}_i, \Theta)$$

 $\ln L(\mathbf{X}, \boldsymbol{\Theta}) = \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{i=1}^{N} \ln N(\mathbf{x}_{i} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$

GMM-Basics

 $p(\mathbf{x}|\theta) = p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k). \qquad 0 \leqslant \pi_k \leqslant 1 \qquad \sum_{k=1}^{K} \pi_k = 1$ • GMM

• 1 of K K-dimensional binary random variable z representation $z_k \in \{0,1\}$ and $\sum_k z_k = 1$ $p(z_k = 1) = \pi_k$ $p(\mathbf{z}) = \prod^K \pi_k^{z_k}$

 $p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ $p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^K \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$ conditional probability

$$p(\mathbf{x}) = \sum_{\mathbf{z}} \underbrace{p(\mathbf{z})p(\mathbf{x}|\mathbf{z})}_{\mathbf{p}(\mathbf{x},\mathbf{z})} = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

GMM-Basics

• GMM

$$p(\mathbf{x}|\theta) = p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k). \qquad 0 \leqslant \pi_k \leqslant 1 \qquad \sum_{k=1}^{K} \pi_k = 1$$

• 1 of K representation

$$K$$
-dimensional binary random variable \mathbf{z} $z_k \in \{0,1\}$ and $\sum_k z_k = 1$ $p(z_k = 1) = \pi_k$ $p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$

conditional probability

$$p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 $p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^K \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} | \mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

GMM-Basics

Maximum likelihood (GMM)

 $\ln L(\mathbf{X}, \boldsymbol{\Theta}) = \ln L(\mathbf{X}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln p(\mathbf{X} | \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$ Vector of K D-dim. means $\mu_{\mathbf{k}}$ Vector of K DxD covariances Σ_k

•maximizing w.r.t π , μ and $\Sigma \rightarrow$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \qquad \Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^{\mathrm{T}}$$

$$\left(N_k = \sum_{n=1}^N \gamma(z_{nk}) \right) \qquad \pi_k = \frac{N_k}{N_k}$$

GMM-Basics

• GMM

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k). \qquad 0 \leqslant \pi_k \leqslant 1 \qquad \sum_{k=1}^{K} \pi_k = 1$$

• 1 of k representation

K-dimensional binary random variable z $z_k \in \{0,1\}$ and $\sum_k z_k = 1$

$$p(z_k = 1) = \pi_k$$

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k}$$

remark:

If we have several observations x_1, \dots, x_N , then, because we have represented the marginal distribution in the form $p(\mathbf{x}) =$ $\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$, it follows that for every observed data point \mathbf{x}_n there is a corresponding

latent variable
$$\mathbf{z}_n$$
.
$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

GMM-Basics

Responsibilities

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(\mathbf{x} = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

Example

GMM-Basics

Responsibilities

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(\mathbf{x} = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

Example

GMM-Basics

Maximum likelihood (GMM)

GMM-Basics

Maximum likelihood (GMM)

EM-algorithm: General View

Having latent variables Z, ML becomes

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

- Summation inside ln → Problems!
- If we knew the complete dataset $\{\mathbf{X},\mathbf{Z}\}$ (and thus the distribution $p(\mathbf{X},\mathbf{Z}|\theta)$), we could use ML to solve for θ with $p(\mathbf{X},\mathbf{Z}|\theta)$ directly (which is easy, as we will see, because $p(\mathbf{X},\mathbf{Z}|\theta)$ is of exponential family (the functional form is known!!)
- We only know $p(\mathbf{Z}|\mathbf{X},\theta)$ (\Rightarrow responsibilities, as we will see) \Rightarrow compute expectation of (unknown) quantity $p(\mathbf{X},\mathbf{Z}|\theta)$ or even better of the quantity $\ln p(\mathbf{X},\mathbf{Z}|\theta)$

EM-algorithm: General View

Having latent variables Z, ML becomes

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

- Summation inside In → Problems!
- If we knew the complete dataset $\{\mathbf{X},\mathbf{Z}\}$ (and thus the distribution $p(\mathbf{X},\mathbf{Z}|\theta)$), we could use ML to solve for θ with $p(\mathbf{X},\mathbf{Z}|\theta)$ directly (which is easy, as we will see, because $p(\mathbf{X},\mathbf{Z}|\theta)$ is of exponential family (the functional form is known!!)
- We only know $p(\mathbf{Z}|\mathbf{X},\theta)$ (\rightarrow responsibilities, as we will see) \rightarrow compute expectation of (unknown) quantity $p(\mathbf{X},\mathbf{Z}|\theta)$ or even better of the quantity $\ln p(\mathbf{X},\mathbf{Z}|\theta)$

EM-algorithm: General View

Having latent variables Z, ML becomes

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

- Summation inside ln → Problems!
- If we knew the complete dataset $\{\mathbf{X},\mathbf{Z}\}$ (and thus the distribution $p(\mathbf{X},\mathbf{Z}|\theta)$), we could use ML to solve for θ with $p(\mathbf{X},\mathbf{Z}|\theta)$ directly (which is easy, as we will see, because $p(\mathbf{X},\mathbf{Z}|\theta)$ is of exponential family (the functional form is known!!)
- We only know $p(\mathbf{Z}|\mathbf{X},\theta)$ (\rightarrow responsibilities, as we will see) \rightarrow compute expectation of (unknown) quantity $p(\mathbf{X},\mathbf{Z}|\theta)$ or even better of the quantity $\ln p(\mathbf{X},\mathbf{Z}|\theta)$

EM-algorithm: General View

Having latent variables Z, ML becomes

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

- Summation inside In → Problems!
- If we knew the complete dataset $\{\mathbf{X},\mathbf{Z}\}$ (and thus the distribution $p(\mathbf{X},\mathbf{Z}|\theta)$), we could use ML to solve for θ with $p(\mathbf{X},\mathbf{Z}|\theta)$ directly (which is easy, as we will see, because $p(\mathbf{X},\mathbf{Z}|\theta)$ is of exponential family (the functional form is known!!)
- We only know $p(\mathbf{Z}|\mathbf{X},\theta)$ (\rightarrow responsibilities, as we will see) \rightarrow compute expectation of (unknown) quantity $p(\mathbf{X},\mathbf{Z}|\theta)$ or even better of the quantity $\ln p(\mathbf{X},\mathbf{Z}|\theta)$

(1) (b) (2) (6) (9) (w)

EM-algorithm: General View

Having latent variables Z, ML becomes

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

- Summation inside ln → Problems!
- If we knew the complete dataset $\{\mathbf{X},\mathbf{Z}\}$ (and thus the distribution $p(\mathbf{X},\mathbf{Z}|\theta)$), we could use ML to solve for θ with $p(\mathbf{X},\mathbf{Z}|\theta)$ directly (which is easy, as we will see, because $p(\mathbf{X},\mathbf{Z}|\theta)$ is of exponential family (the functional form is known!!)
- We only know $p(\mathbf{Z}|\mathbf{X},\theta)$ (\rightarrow responsibilities, as we will see) \rightarrow compute expectation of (unknown) quantity $p(\mathbf{X},\mathbf{Z}|\theta)$ or even better of the quantity $\ln p(\mathbf{X},\mathbf{Z}|\theta)$

EM-algorithm: General View

Having latent variables Z, ML becomes

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

- Summation inside In → Problems!
- If we knew the complete dataset $\{\mathbf{X},\mathbf{Z}\}$ (and thus the distribution $p(\mathbf{X},\mathbf{Z}|\theta)$), we could use ML to solve for θ with $p(\mathbf{X},\mathbf{Z}|\theta)$ directly (which is easy, as we will see, because $p(\mathbf{X},\mathbf{Z}|\theta)$ is of exponential family (the functional form is known!!)
- We only know $p(\mathbf{Z}|\mathbf{X},\theta)$ (\Rightarrow responsibilities, as we will see) \Rightarrow compute expectation of (unknown) quantity $p(\mathbf{X},\mathbf{Z}|\theta)$ or even better of the quantity $\ln p(\mathbf{X},\mathbf{Z}|\theta)$

EM-algorithm: General View

alternating EM:

E-Step: compute

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}).$$

M-Step: compute

$$\theta^{\text{new}} = \underset{\theta}{\operatorname{arg \, max}} \mathcal{Q}(\theta, \theta^{\text{old}}).$$

EM-algorithm: General View

alternating EM:

E-Step: compute

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}}_{\mathbf{z}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}).$$

M-Step: compute

$$\theta^{\text{new}} = \arg \max_{\theta} \mathcal{Q}(\theta, \theta^{\text{old}}).$$

EM-algorithm: General View

alternating EM:

E-Step: compute

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}).$$

M-Step: compute

$$\theta^{\text{new}} = \arg \max_{\theta} \mathcal{Q}(\theta, \theta^{\text{old}}).$$

B

EM-algorithm: General View

alternating EM:

E-Step:

compute
$$Q(\theta, \theta^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\theta).$$

M-Step: compute

$$oldsymbol{ heta}^{
m new} = rg \max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{
m old}).$$

EM-algorithm: General View

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})\right]^{z_{nk}}$$

$$\mathbb{E}[z_{nk}] = \frac{\sum_{z_{nk} \in \{0,1\}}}{\sum_{z_{nj}} \left[\pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})\right]^{z_{nk}}}$$

$$= \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})} = \gamma(z_{nk})$$

$$\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})$$

R

EM-algorithm: General View

applied to GMM:

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k} \qquad p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$

$$p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}} \mathbb{R}$$

$$\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}.$$

EM: Relation to K-Means

that is why K-Means favors spherical clusters

• If we use k Gaussians with Σ = εΙ:

$$p(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{(2\pi\epsilon)^{1/2}} \exp\left\{-\frac{1}{2\epsilon} \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right\}$$

we get for the responsibilities:

$$\gamma(z_{nk}) = \frac{\pi_k \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 / 2\epsilon\right\}}{\sum_i \pi_i \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_i\|^2 / 2\epsilon\right\}}$$

• Letting $\varepsilon \to 0$ and Taylor-Expansion:

$$\mathbb{E}_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] \to -\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 + \text{const}$$

→ same as on slide 18

that is why K Means favors spherical

• If we use k Gaussians with Σ = εΙ: <

$$p(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{(2\pi\epsilon)^{1/2}} \exp\left\{-\frac{1}{2\epsilon} \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right\}$$

•we get for the responsibilities:

$$\gamma(z_{nk}) = \frac{\pi_k \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 / 2\epsilon\right\}}{\sum_j \pi_j \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 / 2\epsilon\right\}}$$

• Letting $\varepsilon \to 0$ and Taylor-Expansion:

$$\mathbb{E}_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] \to -\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 + \text{const}$$

→ same as on slide 18

Complex Network Properties

Now: investigate a series of properties / classification axes of complex real world networks (mostly compared to random NW)

B

Real World Networks: Properties and Models

Lecture will mostly follow [1], thus corresponding citations are often omitted to increase readability

Mean Average Path Length

- "Small World Effect": l(n) "small" $\rightarrow l(n) \in O(log(n))$
- undirected graph:

$$\ell = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij}$$

formula also counts 0 distances from i to i: $\frac{1}{2}$ n(n+1) = $\frac{1}{2}$ n(n-1) + n

• Expression allowing for disconnected components (where $d_{ij}=\infty$ can occur): harmonic mean:

$$\ell^{-1} = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij}^{-1}$$

- "Small World Effect": l(n) "small" $\rightarrow l(n) \in O(log(n))$
- undirected graph:

$$\ell = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij}$$

formula also counts 0 distances from i to i: $\frac{1}{2}$ n(n+1) = $\frac{1}{2}$ n(n-1) + n

• Expression allowing for disconnected components (where d_{ij}=∞ can occur): harmonic mean:

$$\ell^{-1} = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij}^{-1}$$

Transitivity / Clustering Coefficient

Clustering coefficient (whole graph):

$$C = C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$

$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} C_i &= \frac{\text{number of triangles connected to vertex } \mathit{i}}{\text{number of triples centered on vertex } \mathit{i}} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\frac{k_i(k_i-1)}{2}} \end{aligned} \tag{see Introduction , k_i = degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

- "Small World Effect": l(n) "small" $\rightarrow l(n) \in O(log(n))$
- undirected graph:

$$\ell = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij}$$

formula also counts 0 distances from i to i: $\frac{1}{2}$ n(n+1) = $\frac{1}{2}$ n(n-1) + n

• Expression allowing for disconnected components (where d_{ij}=∞ can occur): harmonic mean:

$$\ell^{-1} = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij}^{-1}$$

Transitivity / Clustering Coefficient

p(FOAF)

mean of ratio instead of ratio of means

• Clustering coefficient (whole graph):

$$C = C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$

$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} C_i &= \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\frac{k_i(k_i-1)}{2}} \end{split} \tag{see Introduction , k_i = degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

Transitivity / Clustering Coefficient

Clustering coefficient (whole graph):

$$C = C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$

$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} C_i &= \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\underbrace{\frac{k_i(k_i-1)}{2}}} \end{split} \tag{see Introduction , k_i = degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

mean of ratio instead of ratio of means

mean of ratio instead of ratio of means

Transitivity / Clustering Coefficient

Clustering coefficient (whole graph):

$$C = C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$

$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} C_i &= \frac{\text{number of triangles connected to vertex } \mathit{i}}{\text{number of triples centered on vertex } \mathit{i}} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\underbrace{\frac{k_i(k_i-1)}{2}}} \end{split} \tag{see Introduction , k_i = degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

Transitivity / Clustering Coefficient

• Clustering coefficient (whole graph):

$$C = C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$

$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

• Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} C_i &= \frac{\text{number of triangles connected to vertex } \mathit{i}}{\text{number of triples centered on vertex } \mathit{i}} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\underbrace{k_i(k_i-1)}_{2}} \end{aligned} \tag{see Introduction , k_i = degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

mean of ratio instead of ratio of means

Transitivity / Clustering Coefficient

• Clustering coefficient (whole graph):

$$C = C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$

$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} C_i &= \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\underbrace{\frac{k_i(k_i-1)^k}{2}}} \end{split} \qquad \text{(see Introduction , k}_i = \text{degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

Transitivity / Clustering Coefficient

Example:

$$C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}} = \frac{3 \times 1}{8} = \frac{0.375}{8}$$

$$C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$
 with $C_{i} = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i}$

$$C^{(2)} = 1/5 (1 + 1 + 1/6 + 0 + 0) = 13/30 = 0.433333$$

Transitivity / Clustering Coefficient

Example:

$$C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}} = \frac{3 \times 1}{8} = 0.375$$

$$C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$
 with $C_{i} = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i}$

$$C^{(2)} = 1/5 (1 + 1 + 1/6 + 0 + 0) = 13/30 = 0.433333$$

Transitivity / Clustering Coefficient

Example:

$$C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}} = \frac{3 \times 1}{8} = 0.375$$

$$C^{(2)} = \frac{1}{n} \sum_{i} C_i$$
 with $C_i = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i}$

$$C^{(2)} = 1/5 (1 + 1 + 1/6 + 0 + 0) = 13/30 = 0.433333$$

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company dectors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11 803 064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
п	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
iti.	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
information	citation network	directed	783 339	6716198	8.57		3.0/-				351
g.	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	-	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
8	power grid	undirected	4941	6 5 9 4	2.67	18.99	-	0.10	0.080	-0.003	416
technological	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
olog	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
- R	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
ŭ	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
og	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
.çi	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices i ber of edges m; mean degree z; mean vertex—vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "..." if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and \mathbb{R} gree correlation coefficient $E^{(2)}$ last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

	network	type	n	m	z	ℓ	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449 913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11 803 064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
п	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
tio	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
Ĕ	citation network	directed	783 339	6716198	8.57		3.0/-				351
information	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	-	0.13	0.15	0.157	244
	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
귱	power grid	undirected	4941	6 5 9 4	2.67	18.99	-	0.10	0.080	-0.003	416
technological	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
log	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
- F	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
Ť.	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
log	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
bio	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices i ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or ".." if not, in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Sel last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
socia.	biology coauthorship	undirected	1 520 251	11803064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
п	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
tio	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
ä	citation network	directed	783 339	6716198	8.57		3.0/-				351
information	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	_	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
-8	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
gi.	train routes	undirected	587	19 603	66.79	2.16	_		0.69	-0.033	366
technological	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
- H	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
ţ.	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
logi	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
pio	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	_	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices ι ber of edges m; mean degree z; mean vertex-vertex distance t; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Set last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

[1]		(4)		
[1]				

		[1]	

	network	type	n	m	z	ℓ	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11 803 064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
_	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
tio.	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
Ë	citation network	directed	783 339	6716198	8.57		3.0/-				351
information	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	-	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
18	power grid	undirected	4941	6 5 9 4	2.67	18.99	-	0.10	0.080	-0.003	416
.g.	train routes	undirected	587	19 603	66.79	2.16	_		0.69	-0.033	366
technological	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
큥	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
ů,	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
log	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
bio	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	_	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices i ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or ".." if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Set last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449 913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11803064	15.53	4.92	_	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1		1/g		8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
п	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
tio.	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
E S	citation network	directed	783 339	6716198	8.57		3.0/-				351
information	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	_	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
7	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
ògi.	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
technological	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
-G	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
Ť,	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
CS	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
log	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
biological	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	_	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices ι ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Second at the distribution of the network in the bibliography. Blank entries indicate unavailable data.

	network	type	n	m	z	ℓ	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449 913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11 803 064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1		1/2		8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
п	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
tio	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.42.7				74
information	citation network	directed	783 339	6716198	8.57		3.0/-				351
- Ga	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	-	0.13	0.15	0.157	244
	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
7	power grid	undirected	4941	6 5 9 4	2.67	18.99	-	0.10	0.080	-0.003	416
technological	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
log	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
- G	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
ř	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
log	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
bio.	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	_	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices i ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Set last column gives the citation(s) for the network in the bibliography. Blank purpose the citation r and r are the properties of the prope

last column gives the citation(s) for the network in the bibliograph	y. Blank entries indicate unavailable data.

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1 520 251	11803064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	_	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
_	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
tio.	WWW Altavista	directed	203 549 046	2 130 000 000	10.46	16.18	2.1/2.7				74
information	citation network	directed	783 339	6716198	8.57		3.0/-			<u> </u>	351
ş.	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	_	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
-8	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
.g.	train routes	undirected	587	19 603	66.79	2.16	_		0.69	-0.033	366
technological	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
큠	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
ů,	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
biological	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
ogo	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
bio	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
ا ت	neural network	directed	307	2 359	7.68	3.97	_	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "..." if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient $C^{(3)}$ clustering to the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449 913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
socia]	biology coauthorship	undirected	1 520 251	11 803 064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	_	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
п	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
information	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
ä	citation network	directed	783 339	6716198	8.57		3.0/-				351
ıţo	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	_	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
-8	power grid	undirected	4941	6 5 9 4	2.67	18.99	-	0.10	0.080	-0.003	416
gi.	train routes	undirected	587	19 603	66.79	2.16	_		0.69	₹.033	366
technological	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
- I	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
ţ.	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
Ca	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
biological	marine food web	directed	135	598	4.43	2.05	_	0.16	0.23	-0.263	204
pio	freshwater food web	directed	92	997	10.84	1.90	_	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	_	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices i ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out onents are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Set last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

[1]

Degree Distribution

• Notation:

[1]

 $p(k) = p_k = fraction of nodes having degree k$

Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

• power law:

$$p_k \sim k^{-\alpha}$$

$$\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$$

exponential:

$$p_k \sim e^{-k/\kappa}$$

$$P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Degree Distribution

• Notation:

 $p(k) = p_k = fraction of nodes having degree k$

Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}|_{\mathbb{R}}$$

power law:

$$p_k \sim k^{-\alpha}$$

$$\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$$

exponential:

$$p_k \sim e^{-k/\kappa}$$

$$P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Degree Distribution

Cumulative distributions Pk of example real world NW

Degree Distribution

• Notation:

 $p(k) = p_k = fraction of nodes having degree k$

Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

• power law:

$$p_k \sim k^{-\alpha}$$

$$\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$$

exponential:

$$p_k \sim e^{-k/\kappa}$$

$$P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Degree Distribution

Cumulative distributions P_k of example real world NW

Degree Distribution

Cumulative distributions P_k of example real world NW

Degree Distribution

Cumulative distributions P_k of example real world NW

Degree Distribution

Cumulative distributions Pk of example real world NW

Degree Distribution

"Power law" == "Scale free":

- $f(x) = x^{\alpha}$ is only solution to functional equation formalizing scale freedom f(ax) = b f(x)
- in other words: change of scale → f still "looks the same"
- other point of view.

Although we can compute the expectation $E(k)=\sum_k k k^{-\alpha}$ if $\alpha>1$, the variance (error bars) $Var(k)=\sum_k (k-E(k))^2 k^{-\alpha}$ diverges \rightarrow we "cannot be shure about k" \rightarrow "no characteristic scale" \rightarrow "scale free"

"Power law" == "Scale free":

• $f(x) \approx x^{\alpha}$ is only solution to functional equation formalizing scale freedom f(ax) = b t(x)

• in other words: change of scale → f still "looks the same"

• other point of view.

Although we can compute the expectation $E(k)=\sum_k k\ k^{-\alpha}$ if $\alpha>1$, the variance (error bars) $Var(k)=\sum_k (k-E(k))^2\ k^{-\alpha}$ diverges \rightarrow we "cannot be shure about k" \rightarrow "no characteristic scale" \rightarrow "scale free"

"Power law" == "Scale free":

• $f(x) = x^{\alpha}$ is only solution to functional equation formalizing scale freedom f(ax) = b f(x)

• in other words: change of scale → f still "looks the same"

• other point of view.

Although we can compute the expectation $E(k)=\sum_k k\ k^{-\alpha}$ if $\alpha>1$, the variance (error bars) $Var(k)=\sum_k (k-E(k))^2\ k^{-\alpha}$ diverges \rightarrow we "cannot be shure about k^{α} \rightarrow "no characteristic scale" \rightarrow "scale free"

