Script generated by TTT

Title: profilel (11.06.2013)
Date: Tue Jun 11 11:59:36 CEST 2013
Duration: 87:08 min

Pages: 67

&,
conductance

[/ &

~Conductance

¢ Clustering paradigm reformulated: Clusters should be well connected
(many edges need to be removed to make it unconnected); few inter
cluster edges (ideally none)

® Conductance: Measure for bottlenecks (Bottleneck: Cut that
separates V into roughly same size halves and “cuts across” relatively
few edges)

® Let C={C_1,V\C_1} be a cut. Conductance ¢ of C is defined as

1 if 0_1 € {an} the smaller
o(C), the

R more
@(C)=40 if C_1 ¢ {2,V}, w(E(C))=0 bottlenecky*

isC

w(E(C)) " _
3 otherwise
min ZGEE(C_1, V)w(e)’zes_g(y ci V)w(e))

&,
Conductance

® Clustering paradigm reformulated: Clusters should be well connected
(many edges need to be removed to make it unconnected); few inter
cluster edges (ideally none)

® Conductance: Measure for bottlenecks (Bottleneck: Cut that
separates V into roughly same size halves and “cuts across” relatively
few edges)

® Let C={C_1,V\C_1} be a cut. Conductance ¢ of C is defined as

Iy
1 ifC_1e{d,V} the smaller
#(C), the
N more
o(C)=10 if C_1 ¢ {&,V}, w(E(C))=0 Lbottlenecky”
isC

w(E(C))
min(ZeeE(CJ, i) w(eLZesf(V CA V) w(e))

otherwise

®Theorem: If G is undirected and positively weighted, G has maximum
conductance @¢(G)=1 iff G is connected and has at most three nodes or
is a star. (Proof: see [1])

ATk

®Proof ¢ Y e W@ =WEC_D)+w(EC) >

w(E(C)) _
mm(zeeg(c_1,) W(e)=zeeE(V\C_1.. pyW(e)
_ w(E(C)) _
w(E(C)) +min(w(E(C_1),w(E(V\C_T)) ~

0 if star or at most 3 nodes

1

@,
conductance

@,
Conductance

® With conductance we can define two appropriate quality measures for

clusterings:

® First measure: g=0 and J/(C)=ming(G[C_I))

1<i<k

® |f the measure is small: At least one of the clusters (more precisely:
the induced subgraph) contains at least one bottleneck - This cluster is

too coarse =Use minimum conductance cut to cut this cluster in
“halves”

® From theorem before: Only clusterings where the clusters induce

subgraphs that are stars or have size at most three have /=1 (fis called

intra cluster conductance)

&,
conductance

® With conductance we can define two appropriate quality measures for
clusterings:

. & . ke
® First measure: g=0 and /(€)= min e(GIC_ID

® |f the measure is small: At least one of the clusters (more precisely:
the induced subgraph) contains at least one bottleneck = This cluster is
foo coarse »Use minimum conductance cut to cut this cluster in
“halves”

® From theorem before: Only clusterings where the clusters induce
subgraphs that are stars or have size at most three have /=1 (f'is called
intra cluster conductance)

Ferformance

® Second measure: /=0 and

1 i C={}
gC)=q,_ @(C_i, V\C_i) otherwise

1<i<k

® |f the measure is small: At least one of%he clusters (more precisely:

the induced subgraph) has many connections to outside = The
clustering is too fine - Merge clusters

® From theorem before: Only clusterings that have inter cluster edge
weight zero have g=1 (g is called inter cluster conductance)

® Main idea: Clustering paradigm - Count “correctly classified pairs of
nodes”. A pair of nodes is correctly classified if:

® Itis in the same cluster AND connected by an edge = fcounts
the number of edges within clusters

® If it is not in the same cluster AND not connected by an edge ¢
counts the number of non-existent edges between clusters

&

k
f(©)=>| EC_D|
% i=1

g(€)= > [(u,m g El*[ueC_i,veC_ji# j]

uyvelr

Iverson-notation: [L]=1 if L is true

@,
Ferformance

[FREN
Ferformance

® Main idea: Clustering paradigm - Count “correctly classified pairs of
nodes”. A pair of nodes is correctly classified if:

® Itis in the same cluster AND connected by an edge = fcounts
the number of edges within clusters

® If it is not in the same cluster AND not connected by an edge >g
counts the number of non-existent edges between clusters

k
J(©) = | EC_D)

g(€)= > [(w,v)g El*[ueC_i,veC_ji# j]
R

uyv el

Iverson-notation: [L]=1 if L is true

&
Ferformance

® Main idea: Clustering paradigm - Count “correctly classified pairs of
nodes”. A pair of nodes is correctly classified if:

® Itis in the same cluster AND connected by an edge = fcounts
the number of edges within clusters

® If it is not in the same cluster AND not connected by an edge ¢
counts the number of non-existent edges between clusters

k
/(©)= | ECD)

g(€)= > [(u,m e El*[ueC_i,ve C_ji# j]
ks

uyvelr

i

Iverson-notation: [L]=1 if L is true

&
Ferformance

®f using weighted edges - some modifications:

® For the denominator, we need a maximum for the edge weights;
Take the max weight in G - Clusterings over different graphs are
not comparable in quality. Better: Use weights normalized to 1 2
Max weight M = 1

J(©)=2 w(E(C_D)

g(C)= > M*[(u,v)¢ E]*[ueC_i,veC_ji# j]

i

® In that version g neglects the individual inter-cluster edges -
Introduce g,,

g'(C)=gC)+M|[EC)|-w(E(C)

J

£.(C)
® Overall index is then:
perf, (€) - /©+8(©)+92.(©)
s M(VI(V]-D)

® other possibility: minimize incorrectly classified edges (dual
problem)

O & &

Performance Ferformance
® In that version g neglects the individual inter-cluster edges > ® In that version g neglects the individual inter-cluster edges -
Introduce g,, Introduce g,,
s
g'(C)=gC)+M|EC)|-w(E(C)) g'(C)=gC)+ M| EC)|-w(E(C))
\ v J L v J
gw (C) gw (C)
® Overall index is then: ® Overall index is then:
(] C)+9¢g.(C Cc C)+4g,.(C "
perfw(c):f()+g()+ gu() perfw(C):f()+g()+ gu()
MVI(V -1 MV{(V]-1)
® other possibility: minimize incorrectly classified edges (dual ® other possibility: minimize incorrectly classified edges (dual
problem) problem)
o & @, _
Performance Utnher Indices
® Calculating the maximum of f+g is NP-hard (In fact calculating the ® If density measure 7T on graphs is available:

maximum of f+g would in essence be calculating the optimal clustering)

® 5 Since there are 1/2 [V| (JV]-1) node pairs = upper bound for f+g is worst case: nﬁn{ﬁ((;[('l]) _____ ,—,((;’[("A_D}
V] (IV]-1) 2 use |V| (]V]-1) as denominator in quality measure !

1 -
average case: — Z (G [((])
® The performance index is then: k i Iy
best case: max{m(G[C1]),..., m(G[Ck])}
perf(C) _ f(C)+g(C) 1 i
-y
° (especially suitable in metric spaces)
® Problems with Performance: when graph is sparse (example: planar
graphs: |E| is linear in |V]). Tendency: Performance delivers many small

clusters

&
Graph Clustering Algorithms

[JEN
Graph Clustering Algorithms

® What have we seen so far? Measures for cluster quality
® But how do we compute such clusters?

® First group of methods: Greedy approaches

let L, be a feasilple solution;

i €0;

while ({L | LEN(L;), ©(L)gc(Li)} # @) {
Livg, € argmingeg iy ¢ (L) ;

i €

Space of all solutions L that can
be constructed from solution L;

c(L) is the cost of solution L

o &
Graph Clustering Algorithms

® What have we seen so far? Measures for cluster quality
® But how do we compute such clusters?

® First group of methods: Greedy approaches

let 1, [%be a feasible solution;

i €0;

while ({L | LEN(L;), ©(L)gc(Ls)} # 0) {
Liyy € argminggg i c(L);

i€

Space of all solutions L that can
be constructed from solution L;

c(L) is the cost of solution L

@,
Graph Clustering Algorithms

® What have we seen so far? Measures for cluster quality
® But how do we compute such clusters?

® First group of methods: Greedy approaches

let L, be a feasible solution;

i €0; .

while ({L | LEN(L;)) C(L)gc(Li)} # @) {
Liy, € a gmingey iy C (L) ;

i €

Space of all solutions L that can
be constructed from solution L;

c(L) is the cost of solution L

® What have we seen so far? Measures for cluster quality
® But how do we compute such clusters?

® First group of methods: Greedy approaches

let L, be a feasible solution;

i €0;

while ({L | LEN(L;), ©(L)gc(Ls)} # 0) {
Lis € argmingeg sy c (L) ;

i€

&

Space of all solutions L that can
be constructed from solution L;

c(L) is the cost of solution L

&
Graph Clustering Algorithms

RN

Graph Clustering Algorithms

® Advantage of Dendrograms: Can be “cut” at any desired number of
clusters.

singletons 1-clustering

o &
Linkage

¢ Linkage (Agglomeration): Iteratively coarsens a given clustering by
merging two clusters until 1-clustering is reached (“bottom up”)

® Splitting (Division): Iteratively refines a given clustering by splitting
one cluster until slingleton clustering is reached (“top down”).

¢ Linkage:

O &

® Given: G=(V,E,w); initial clustering Cy; i

® Given: Either Cglobal- A(G) 2 E¥ 0r Cpeq: P(V) X P(V) = R* (for
merging operations)
® i>i+1: Either merge those two clusters where resulting clustering yields
the minimum global cost
or merge those two clusters with the minimum local
merging cost

Graph Clustering Algorithms

Variants / realizations of Linkage:

® Let d(u,v) denote the minimal path length between nodes u and v
then local cost function:

—
nljl_x/{d(u,vﬂ ueC,veC}
/mm) [

Complete Linkage single Linkage

K
¢ Linkage (Agglomeration): Iteratively coarsens a given clustering by
merging two clusters until 1-clustering is reached (“bottom up”)

¢ Splitting (Division): Iteratively refines a given clustering by splitting
one cluster until slingleton clustering is reached (“top down”).

¢ Linkage:

® Given: G=(V,E,w); initial clustering C;;

® Given: Either Cglobal- A(G) 2 E¥ OF Cpeq: P(V) X P(V) = R* (for
merging operations)
® i>i+1: Either merge those two clusters where resulting clustering yields
the minimum global cost
or merge those two clusters with the minimum local
merging cost

&, RN
Graph Clustering Algorithms Linkage
® Linkage (Agglomeration): Iteratively coarsens a given clustering by ® Example) ' R R
1

merging two clusters until 1-clustering is reached (“bottom up”)

® Splitting (Division): Iteratively refines a given clustering by splitting
one cluster until slingleton clustering is reached (“top down”).

Threshold graphs:

weight matrix:

U

L5 |
™
G |y

X vy

2 2 2 2
®
1@ @: 1 @3 3 1 3
° Linkage:
. 0@ @ @ @ 0@ @ 0 4
Given: G=(V,E,w); initial clustering C;; G, . Gyl Gy G,
® Given: Either Cglobal- A(G) = B Or Cpeq: P(V) x P(V) 2 E* (for ’ 2) ’
merging operations)
® i>i+1: Either merge those two clusters where resulting clustering yields 1 3 1 3 3 1 3
the minimum global cost |,
or merge those two clusters with the minimum local 0 4 0 4 0 4 0 4
merging cost
G Gs G, G,
o & &,
Linkage Linkage
Resulting dendrograms: W e Resulting dendrograms: e o
1 2 8 3 o x 4 2 3 g
]) 7 [. . | ~ 9 5 7 (]
Single Link Complete Link x 001 | Single Link Complete Link weight matrix: 9 < 0 1 |

5 0 ~ 6 g

weight matrix: _I, \,

i 1 [X Yy

1 [l i& /Q
v Uy Uy Us Uy 54 ? W Q

o4

Uy U Uy Uy Wy

[led

Uy Up Uy Uy T4

o4

[]

¢ ke
I o3
¢ & P 0,y

G, G,

G |y

X vy

&
Linkage

[JEN
Linkage

Resulting dendrograms:

Resulting dendrograms:

g S 4 1
x i) 8 3 to x 1 3 vo
. . | x 9 5 7 v . . | ~ 9 5 7 r
Single Link Complete Link weight matrix: 2 0 x 0 | f.l Single Link Complete Link weight matrix: 2 00 x 0 1 ..l
8 5 0 x 6 v] 5 LU 6 B
3 7T 1 6 r: i 7T 1 6 l:
¢ ¢ / /
I / I o3 /'3 3
El Ellkg ® 4 c? '4 El El ® %1 & o, *y & 0y
= By G Gs Gs G-
¢ ¢ [2 &
U Uy Uy U3 U Uy Uy Uy 3 U
543%'3%'3@ et MR o o
4 4 4 4 4 4 4 4
Gs G; G, G, Gs G G, Gy
[HREN O &
Linkage Linkage
Resulting dendrograms: ‘ Resulting dendrograms:
p ™ V2 T3 Uy W v vy U3 1y
x | 2 8 3 o X 1 2 8 3 vo
. . I~ 9 5 7 |@ . . I < 9 5 7 |o
Single Link Complete Link weight matrix: 2 0 x 0 | f.l Single Link Complete Link weight matrix: 2.0 x 0 1 ..l
8 5 0 x 6 v] 5 LU 6 B
b 7T 1 6 x ;-,! T 1 6 .:
¢ ¢
A 9 /'
® (9 ‘4

[ded

Uy U Uy Uy Wy

o4

® 9y
G

£

;'3 Qs
¢ °, &y
o Gy G,
[¢ ¢
543 ?@ Ws 3
4 4 4 4
Gg Gs G, G

od

Uy Up Uy Uy T4

|y

£

¢
54 3 ? 3 W 3 3
4 n 4 4
Gs G; G, G;

&
Linkage

[JEN
Linkage

Resulting dendrograms:

weight matrix:

Single Link Complete Link

HE
nll ol e
izl

Uy U Uy Uy Wy

o &
Linkage

Resulting dendrograms:

Yo

L |

-_—
[

oS

_——] e

weight matrix:

Single Link Complete Link

ro

vy

[]
7z

i 1 G X vy

i
ARG LY

od

v Uy Uy U3 U
Uy Up Uy Uy T4 1 V2 Vo Us Uy

o
o
o
@

@,
Splitting

Variants / realizations of Linkage:

® Let d(u,v) denote the minimal path length between nodes u and v
then local cost function:

./
HEX/{d(u WlueC,veC}
min

1 n) t

Complete Linkage single Linkage

® Given: G=(V,E,w); initial clustering Cy;

® Given: Either Cgope A(G) 2 R *
Ciocal- P(V) X P(V) =2 R * (for splitting operations) or
Cqiobal- A(G) =2 K * and cut function S: P(V) = P(V) or
Ciocal- P(V) X P(V) > E* and cut functior?S: P(V) 2 P(V)

®i>i+1: Split that cluster where the resulting clustering yields the minimum

global cost or

split the cluster with the minimum local
splitting cost or

split that cluster (according to cut S) where the resulting clustering
yields the minimum global cost or

split the cluster (according to cut S) with the minimum local
splitting cost

RN
Splitting C,: one of the clusters

one “half’ of the split of C,
PN /

[JEN
Splitting

® Given: G=(V,E,w); initial gfustering C
® Given: Eitheg Cyiopar A(E) > R ¥

ocal: P(V) x P(V) = E.* (for splittin
Cglobal- A(G) = E.* and cut function S: P(V) = P(V) or

erations) or

strictly global

strictly local

ocal- P(V) X P(V) 2 R * and cut function S: Py&) =2 P(V)

semi global

=i+

plit that cluster where the defining the cut

die “half’ of the cut (split) of some C,,

global cost or

split the cluster with the minimum local

splitting cost or

cplit that cluster (according to cut S) where the resulting clustering
yields the minimum global cost or

split the cluster (according to cut S) with the minimum local
splitting cost

semi local

o &
Splitting

® Cut function avoids having to test all possible splits

® Variants of Cut functions: s

S (V) :=argmin w(E(V',V\ V")

PAVICV
. w(E(V',V\V')) 1
Sra io V = []
o (V) :=a@min 5o (Vi= V7))
 W(E(V,VAVY)
alance V) a= =
Seatanced (V) :=ggmminl oo (V0 (VI = VD)

Scon uctarice 117)) a= argmax = = 4
ductance (V) 2 argmin (1", V'\1")

inter cluster conductance (slide 14):

1 Fe={.{3}

g(C={V',V\V'})=5(V')={1_@(V', VAF") otherwise

o®
Shifting

® Cut function avoids having to test all possible splits

® Variants of Cut functions:

S(V) =agmin w(BE(V',V\V")
 W(E(V,V\ V) 1
BEvrev V- (V= V) .
. W(B(V, VA V)
Sootenced (V)=S0 S TOVI- VD)
Sccmductance (V) 1= argmax é(V) :MV%HVIH(D(V', V\V')

£V C

Sralio (v) =

inter cluster conductance (slide 14):

FC={.{}}

1
g(c,{V',V\V'})ftS(V')*{l_ﬂV-, V\V') otherwise

let L, be a feasible solution;

i €0;

while ({I. | LEN (L, @{
choose T;,; from N(L;)according to ©;
i € i+1;

¢ Choosing schema © can be either based on potential function ¢, on
random selection or based on genetic algorithms with fitness function
etc.

® Potential function @: A(G) x A(G) = R based: Chose a new clustering
Ci;q so that ¢(C;, C;,4) > 0

SN e
shifting Newman Girvan Method: Centrality-based Splitting + Modularity

- Last example of this part: bringing it all together (see [3]):

let L, be a feasible solution; ® Observations > critique on aggiomerative methods: fail to
i €0; - cluster peripheral nodes correctly [3] 2 Newman Girvan method:
while ({L | LEN(L;)} @{ Divisive hierarchical clustering (splitting) + Modularity:
choose L;,; from N(L;)according to ©; &
i €& i+1;
} 1. Calculate edge betweenness for all edges

2. Remove edge with highest edge betweenness |, dendrogram

3. Recalculate edge betweennes, goto 1.

® Choosing schema © can be either based on potential function ¢, on
random selection or based on genetic algorithms with fitness function

etc. L

® Use Modularity as intra cluster coherence (f) cluster validity
measure (g=0) to optimally cut dendrogram:

Q= Z(F“ — nf) =Tre— He2 “

® Potential function ¢: A(G) X A(G) 2 E based: Chose a new clustering
Ci.q so that ¢(C;, C;,4) > 0

| & H e
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Last example of this part: bringing it all together (see [3]):

® Observations > critique on agglomerative methods: fail to
cluster peripheral nodes correctly [3] > Newman Girvan method:

Divisive hierarchical clustering (splitting) + Modularity:
s

1. Calculate edge betweenness for all edges

2. Remove edge with highest edge betweenness |, dendrogram

3. Recalculate edge betweennes, goto 1.

O0O00000000000000 2asand

® Use Modularity as intra cluster coherence (f) cluster validity ©
measure (g=0) to optimally cut dendrogram: ly 3]

Q= Z(F” —n?) =Tre — H82 “

@
Newman Girvan Method: Centrality-based Splitting + Modularity

H &
Newman Girvan Method: Centrality-based Splitting + Modularity

O0o0000000000000 ALALAAAALALALAL

" 3]

CIEN
Newman Girvan Method: Centrality-based Splitting + Modularity

Which edge centrality?

® Shortest Path Betweeness (works best for most cases [3])

(naive: O(n?m) (breadth first (O(m)) for each pair of vertices) >
better: O(nm) Alg. by Brandes or Newman [3])

® Electric Network based == Random Walk based (see [3])

@,
Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity:

® k clusters = k x k symmetric
malfrix e: e; = |E(C_i,C_))|/|E] :
fraction of edges between
communities

: (3l
® Tre=3_,¢i : fraction of Iy
edges within communities

®a; = Zj €;5 fraction of edges that connect to cluster C_i
md d
® Random network (keep g, fixed): €ij — @i(; —>e',? = af

® Compare (—>difference)

realwithmnd > Q = Z(c«,‘,‘, —aj) ="Tre— || e*||
i

Modularity:
s
® k clusters 2 k x k symmetric
matrix e: e; = |E(C_i,C_)| ! |E|:
fraction of edges between
communities

: 3
® Tre =}, i fraction of
edges within communities

®a; = Zj €44 fraction of edges that connect to cluster C_i

md : nd
® Random network (keep g, fixed): €ij — @il —>€rﬁ - af’

® £ Compare (>difference) . .
realwithmd > Q@ = Z(c"-,-,: —aj) ="Tre— | ||
i

@, RN
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric

matrix e: e; = |E(C_i,C)|/ |E]|:
fraction of edges between

® k clusters = k x k symmetric
matrix e: e = |E(C_i,C_)|/ |E|
fraction of edges between

communities communities
: 3] k. @l

® Tre =), ¢ fraction of ® Tre =}, i fraction of
edges within communities edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i

nd _ : d_ fmd _ : d__
® Random network (keep g, fixed): €ij = @idj —> erlr: = 61’,-2 ® Random network (keep g, fixed): €ij = @ilj —> er,? =
® Compare (—>difference) .) ®f Compare (—>difference) .,

realwithrnd 2> Q= Z(“—'i T1e—He H realwithrnd 2> (@ = Ztn—'l Tle—He H

| & @,
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters = k x k symmetric $; — ® k clusters 2 k x k symmetric

malfrix e: e; = |E(C_i,C_))|/|E] : jj" matrix e: e; = |E(C_i,C_)| ! |E|:

fraction of edges between fraction of edges between

communities communities

, 131 - 3]

® Tre =), ¢ fraction of ® Tre =), ¢ fraction of

edges within communities I edges within communities N

®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i
i

% rnd d " rnd d
® Random network (keep g, fixed): €ij = @idj —> erlr: = 61’,-2 ® Random network (keep g, fixed): €ij = @ilj —> er,? = 1-2
® Compare (—>difference) ®f Compare (—>difference)
realwithrnd > Q= Zc“—'l Tle—He H realwithmd 2> Q@ = ch—'i Tle—He H

@, RN
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric

matrix e: e; = |E(C_i,C)|/ |E]|:
fraction of edges between

® k clusters = k x k symmetric
matrix e: e = |E(C_i,C_)/ IE|:
fraction of edges between

communities communities
: 3] : @l

® Tre =), ¢ fraction of ® Tre =}, i fraction of
edges within communities edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i

nd _ : d_ fmd _ : d__
® Random network (keep g, fixed): €ij = @idj —> erlr: = 61’,-2 ® Random network (keep g, fixed): €ij = @ilj —> er,? =
® Compare (—>difference) .) ®f Compare (—>difference) .,

realwithrnd 2> Q= Z(“—'i T1e—He H realwithrnd 2> (@ = Ztn—'l Tle—He H

| & @,
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:
® k clusters = k x k symmetric $; — ® k clusters 2 k x k symmetric
malfrix e: e; = |E(C_i,C_))|/|E] : jj" matrix e: e; = |E(C_i,C_)| ! |E|:
fraction of edges between fraction of edges between
communities communities
, 131 - 3]
® Tre =), ¢ fraction of ® Tre =3 keii : fraction of
edges within communities edges within communities
®a; = Zj €4; : fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i
nd _ : d_ fmd _ : d__
® Random network (keep g, fixed): €ij = @i@; —>€r,r: = 61’,-2 ® Random network (keep g, fixed): €ij = @i —>€r,? =a?
® Compare (—>difference) ®f Compare (—>difference)
realwithrnd > Q= Zc“—'l Tle—He H realwithmd 2> Q@ = ch—'i Tle—He H

@, RN
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric
matrix e: e; = |[E(C_i,C_))|/|E|:
fraction of edges between
communities

® k clusters = k x k symmetric
matrix e: e; = |[E(C_i,C_))|/|E|:
fraction of edges between
communities

[3] [3]

® Tre=3_,¢i : fraction of ® Tre =}, €ii : fraction of

edges within communities edges within communities
®a; = Z)‘ €;45 fraction of edges that connect to clusl%ter C_i ®a; = Zj €44 fraction of edges that connect to cluiter Ci
® Random network (keep g; fixed): f"rzir}d — Qiaj —>€r,-?d = a’I-Z ® Random network (keep g, fixed): Cl‘;}q = Qjay —>€ri?d = af’
® Compare (—>difference) ®f Compare (—>difference)
realwithrnd > Q= Z(C“ —aj) =Tre— || e*|| real withrnd > Q = Z(eﬁ —b7) =Tre— || ||
i i

| & @,
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:
k k \
- ; : : i . Cil - (|G = 1) s . - 3 . . Gl - (|G- 1)
®In [1]: different notion (not keeping a; fixed): ; (\E((i) — :w?%—l”l) ®in [1]: different notion (not keeping a; fixed): ; (|E(C=‘H - ,,,%)
® In [4]: Newman's version for weighted graphs: B‘\ A ® In [4]: Newman's version for weighted graphs: B‘\ A
idea: use multiple edges to model weights A<}g,c - (; 02 3) B idea: use multiple edges to model weights A<}.§;.C - (ﬁ 02 3) B
1000/ o 1000 o

@, RN
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: l; Modularity:
k k \
o . . . _ . - (cil - 1) . . .)) . |- (|csl = 1)
®In [1]: different notion (not keeping a; fixed): ; (\E((i) — :w?%—l”l) ®in [1]: different notion (not keeping a; fixed): ; (|E(C=‘H - ,,,%) _
ks
® In [4]: Newman's version for weighted graphs: B‘\ A ® In [4]: Newman's version for weighted graphs: B‘\ A
idea: use multiple edges to model weights A<}g,c - (ﬁ 02 3) B idea: use multiple edges to model weights A<}._\;.c - (; 02 3) B
1000/ o 1000 o

| & @,
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: How to compute Modularity with a given (weighted) adjacency matrix?

®In [1]: different notion (not keeping a; fixed): Z (\E(QH - mw)

gt ne(n—1) ® Real graph: Fraction of edges within clusters:

. 3 Agjd(eieg) . I
IE(C_i)| / [E| = JZT o Z Aibles, e5) m=1yl4,
‘ ks .)
® In [4]: Newman's version for weighted graphs: B_\ . ‘1‘ “3 [1’ R ® Random graph (keep degrees F, of vertices fixed): prob of edge
idea: use multiple edges to model weights R ,_lég.c - (§)2 ﬂ) B between vertices i and j is A'_,_Lv_r/(‘zm)z
1000/ b ko :ZA“"
° ® L A,J.‘.. N w
= modularity: — =N A= B e e
modularity: Q ?:112[4” 21”]0((1_(])

which is equal (as before) = Z(c —aj) =Tre—| €

i

® > with the new formulation we can compute modularity for
weighted graphs

| &
Newman Girvan Method: Centrality-based Splitting + Modularity

H &
Newman Girvan Method: Centrality-based Splitting + Modularity

How to compute Modularity with a given (weighted) adjacency matrix?

® Real graph: Fraction of edges within clusters:

4‘4‘1‘
EC_)I/|E| = Zuisi) g X v

=1 i,
ZJJ Aij m=3 Z‘j.AU.

® Random graph (keep degrees k; of vertices fixed): prob of edge
between vertices i and jis k;k; 2m)? &
ky = Ay

® > modularity:

‘ l.’,'nl"j N
Q= ﬂzj:[’lu "~ 2m]c‘i(cl.(])

which is equal (as before) = Z(f —aj) =Tre—|[|e*||

i

® > with the new formulation we can compute modularity for
weighted graphs

CIEN
Newman Girvan Method: Centrality-based Splitting + Modularity

How to compute Modularity with a given (weighted) adjacency matrix?

® Real graph: Fraction of edges within clusters:

245 Aijdleir)

E(C_I/|E| =
IEC_DI/ [l = =5

1 .
= m ."15](5((1.(‘;) m = 3 E U:»iij‘
tj

® Random graph (keep degrees k; of vertices fixed): prob of edge
between vertices i and jis k;k; 2m)?

® > modularity:

) LJ'J o
Q= ﬂzj:[’lu "~ 2m]a(cl'(J)

which is equal (as before) = Z Cii — a

i

® > with the new formulation we can compute modularity for
weighted graphs

How to compute Modularity with a given (weighted) adjacency matrix?

® Real graph: Fraction of edges within clusters:

] o Ad(e;. e
EC_iI/E| = Zulslent) 5 = g S A

—1 A..
Zu Aij m=3 Z‘j.AU.

® Random graph (keep degrees k; of vertices fixed): prob of edge
between vertices i and j is k;k;/2m)?

® > modularity:

s Fiks] . i
@= EZJ: |:AU © 2m Jé((“)

which is equal (as before) = Z(c —aj)=Tre—| e ﬁ

i

® > with the new formulation we can compute modularity for
weighted graphs

O &

