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@.;rltique on Betweenness Based Centralities

SCript  generated by TTT ® major critique: Max-Flow betweenness centrality (suggested to
counteract this drawback) may exhibit similar problems

Title: profilel (04.06.2013) ® here: special Max-Flow betweenness
centrality mfb:
— limit ed ity t
Date: Tue Jun 04 12:02:22 CEST 2013 mit edge capactly fo one ® a7
-- mfb(i) := maximum possible flow R \
. . . through i over all possible solutions to i Growpl ¢ . Growpl
Duration:  89:34 min the s-t-maximum flow problem, averaged . e . e

over all s and t.

Pages: 52

(b) In calculations of flow betweenness, vertices A and B in
this configuration will get high scores while vertex C will not.

Source: [9]
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® c¢fb == random walk betweenness centrality (rwb): ® ¢fb == random walk betweenness centrality (rwb):
® rwb(i): move around ,messages”: start (absorbing) random walk at s, ¢ rwb(i): move around ,messages”: start (absorbing) random walk at s,
end at t: B end at t:
rwb(i):= net number of times that a message passes through i on rwb(i):= net number of times that a message passes through i on
its journey (averaged over a large number of trials and averaged its journey (averaged over a large number of trials and averaged
over s, 1) over s, t)
(,net* number of times: ,cancel back and fourth passes®) (,net* number of times: ,cancel back and fourth passes®)
® ifini, probability that in next step j: ® ifini, probability that in next step j:
A o Ay & .
M;; = A_'j for j # 1, M;; = A_,J for j #£1,
M=A D! with D = diag(k)) M=A D! with D = diag(k,)

D” = K3 Dli =
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cfb == random walk betweenness centrality (rwb):

¢ rwb(i): move around ,messages*: start (absorbing) random walk at s,
end at t:
rwb(i):= net number of times that a message passes through i on
its journey (averaged over a large number of trials and averaged
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Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® we never leave t, once we get there (“Hotel California effect” -)) —

My = 0 for all 2

— possible: remove column t without affecting transitions between any
other vertices;

denote by M; = A, - D,_1 the matrix with these elements removed,

and similarly for 4; and D,.

® forawalk starting at s, the probability that we find ourselves at vertex
j after r steps is given by [1\[,‘]
tlis

¢ probability that we then take a step to an adjacent vertex i is

k5 MG s
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® we never leave t, once we get there (“Hotel California effect” :-)) —

M;; = 0 for all ¢

— possible: remove column t without affecting transitions between any
other vertices;

denote by M, = A, - D;*
and similarly for 4, and D,.

the matrix with these elements removed,

® for a walk starting at s, the probability that we find ourselves at vertex
j after r steps is given by [1@,-]
t11s

® probability that we then take a step to an adjacent vertex i is

ki M s

¢ previous slide: probability at j after r steps and then j — i was:

kMg ;s

¢ summing over r from 0 to < | — geometric series —

MT o=(-M)"t

r=0

vi:|A;|<1  Wwhere A; Eigenvalues of M

Ty I\~ V=T 7 INE

- V=D;'-I-M) ' s=(D;—A)"" s

as before: the net flow of the randgm walk along the edge
fromjtoi==|V,- V|
net flow through vertex i is a half the sum of the flows on the incident edges
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SN
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

Ty I\~ V=T 7 INE

- V=D;'-I-M) ' s=(D;—A)"" s

as before: the net flow of the random walk along the edge
fromjtoi==|V,-V,|
net flow through vertex i is a half the sum of the flows on the incident edges
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® previous slide: probability at j after r steps and then j — i was:

kM );s
[ ]

summing over r from 0 to = : — geometric series —

the total number of times V;; we go from j to i, averaged over all
possible walks is

B = M)

- V=D;'I-M)'s=(D;-A)"" s

as before: the net flow of the random walk along the edge
fromjtoi==1|V;- V|,
net flow through vertex i is a half the sum of the flows on the incident edges

¢ previous slide: probability at j after r steps and then j — i was:

kMg ;s
L ]

summing over r from 0 to < | — geometric series —

the total number of times V;; we go from j to i, averaged over all
possible walks is

k= M)

- V=D;'-I-M) " s=(D;—A)"" s

as before: the net flow of the random walk along the edge
fromjtoi==|V,- V|
net flow through vertex i is a half the sum of the flows on the incident edges
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® previous slide: probability at j after r steps and then j — i was:

kM

® summing over r from 0 to = : — geometric series —

the total number of times V;; we go from j to i, averaged over all
possible walks is

= M) e

- V=D;'I-M)'s=(D;-A)"" s

as before: the net flow of the random walk along the edge
fromjtoi==|V,- V||, &k
net flow through vertex i is a half the sum of the flows on the incident edges
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Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® current flow at node i:

(st 1 y (st -(st)
1 < 1S A v

J
=33 Ay|Tie = Tie = Tje + Ty, for i # s.t.
J

&

® unit current flow at nodes s and t:

159 =1,

S

¢ cfb(i) (denoted as b;) is then:

3 7lst) (takes O(m n?) for all i) —
h = &s<tt (plus matrix inversion:)
%n{_n 1) O((m+n) n?) for everything
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Example ([5])

we never leave t, once we get there (“Hotel California effect” :-)) —

It
M;; =0 for all {

— possible: remove column t without affecting transitions between any
other vertices;

denote by M, = A, - D;*
and similarly for 4, and D,.

the matrix with these elements removed,

® for a walk starting at s, the probability that we find ourselves at vertex
j after r steps is given by [1\.1,-]
t11s

® probability that we then take a step to an adjacent vertex i is

ki My

Network 1 Network 2
betweenness measure
network shortest-path flow random-walk
Network 1:  vertices A & B 0.636 0.631 0.670
vertex C 0.282 0.333
vertices X & Y 0.200 0.068 0.269
Network 2:  vertices A & B 0.265 0.269 0.321
vertex C 0.243 0.267
vertices X & Y 0.125 0.024 0.194
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Network 1 Network 2
betweenness measure
network shortest-path flow random-walk
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Feedback-Centrality

Network 1 Network 2
betweenness measure
network shortest-path flow random-walk

Network 1:  vertices A & B 0.636 0.631 0.670

vertex C 0.282 0.333 &

vertices X & Y 0.200 0.068 0.269
Network 2:  vertices A & B 0.265 0.269 0.321

vertex C 0.243 0.267

vertices X & Y 0.125 0.024 0.194

® Example: Index of Katz:

® Basic idea: Node is more central the more central its neighbors are.

® Directed Graph G=(V,E) with edge (a,b) semantics: ,a voted for b*
s

® |dea: Also count indirect votes; introduce damping function a that
gradually lowers contributions from paths with increasing lengths

® Let A(Kk); denote the number of directed paths from node i to node
j of length k;

wo |V

® Centrality is then: ¢(i) =Y > a(k)A(k) ,

orin ,matrix notation™ ¢ =" g(k)A(k)"(LLL....)" =aAT(LLL...

;53:1 j=1

k=1
(@A) 'c=(LL....1)"
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® |dea: Also count indirect votes; introduce damping function a that
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® Let A(Kk);; denote the number of directed paths from node i to node ® Let A(k);; denote the number of directed paths from node i to node

j of length k; Iz j of length k;
o |V wo |V
® Centrality is then: ¢(i) = Z Z a(k)A(k) , ® Centrality is then: c(i) = Z Z a(k)A(k) ,
e k=1 j=1
orin ,matrix notation™ ¢ =" ¢/(k)A(k)"(LLL...) T =aAT(LLL...)T orin ,matrix notation” ¢ =% g(k)A(k)"(LLL...D " =aAT(LLL...)"
k=1 k=1
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Ais the usual adjacency
matrix of G

® Basic idea: Node is more central the more central its neighbors are.
® If a(k) = ak and by observing that A(k); = (A¥); and assuming

convergence of the geometric series, the equations become

a“ (AHTALL...DT =10-aATY (1L )T

® Example: Index of Katz:

® Directed Graph G=(V,E) with edge (a,b) semantics: ,a voted for b*
® |dea: Also count indirect votes; introduce damping function a that where | is the identity matrix.
gradually lowers contributions from paths with increasing lengths Thus we have:
a ATe=(1L15L...,1)7
® Let A(k); denote the number of directed paths from node i to node )¢=(@LL.H

j of length k; s
> ¥ which shows that centrality values depend on each other.
® Centrality is then: ¢(i) = Z Z a(k)A(k) ,
{ffl Jj=1
or in ,matrix notation: @ _ Z a(k)A(k)T(l,l,l,...kl)T _ C(AT(LLL---J)T
k=1 : If the largest eigenvalue of Ais
(@A) 'c=(LL...)7 less than 1/a then théiseries

converges
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Ais the usual adjacency
matrix of G

® If a(k) = ok and by observing that Ak); = (A¥); and assuming
convergence of the geometric series, the equg‘tions become

a* (AHT(LLL... DT =10-cATY'ALL... DT

where | is the identity matrix.

Thus we have:
aATc=(LL...,1)7

which shows that centrality values depend on each other.

If the largest eigenvalue of A is
less than 1/a then the series
converges
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® If a(k) = ak and by observing that A(k); = (A¥); and assuming
convergence of the geometric series, the equations become

a“ (AHTALL...DT =10-aATY (1L )T

where | is the identity matrix.

Thus we have:
a AT =(LLL..,.D)T .

which shows that centrality values depend on each other.

If the largest eigenvalue of Ais
less than 1/a then the series
converges
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Ais the usual adjacency
matrix of G

® If a(k) = ak and by observing that A(k); = (A¥); and assuming
convergence of the geometric series, the equations become

a (AHTALL...DT =I(I—aAT);(l,l,1,...,l)T

where | is the i
Thus we have:

ntity matrix.

a ATe=(LL..D)T

which shows that centrality values depend on each other.

If the largest eigenvalue of Ais
less than 1/a then the series
converges
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Further example: Hubbell index

® weighted, directed graph G=(V,E); weights formalized in adjacency matrix
w

® centralilty s(v) of node v is proportional to sum of centralities s(w) of
adjacent nodes w (multiplied wﬁh edge weight connecting these nodes to v).

® centrality vector s of the nodes is thus an eigenvector of W: s=Ws

® In order to make this equation solvable, introduce a ,centrality input® or
Lexternal information® E(v) for every node v: s=E+Ws

® > s=(-W)'E

~ 1k
® |-W is invertible if ZWconvergeS &—>the largest eigenvalue of W is less
than one (see[1]).

SN
Feedback-Centrality

Further example: Hubbell index

® weighted, directed graph G=(V,E); weights formalized in adjacency matrix
w

® centralilty s(v) of node v is proportional to sum of centralities s(w) of
adjacent nodes w (multiplied with edge weight connﬁcting these nodes to v).

® centrality vector s of the nodes is thus an eigenvector of W: s=Ws

® In order to make this equation solvable, introduce a ,centrality input” or
.external information® E(v) for every node v: s=E+Ws

® > s=(-W)'E

— ok
® |-W is invertible if ZWconvergeS < —>the largest eigenvalue of W is less
than one (see[1]).

@
Feedback-Centrality

Further example: Hubbell index
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adjacent nodes w (multiplied with edge weight connecting these nodes to v).

® centrality vector s of the nodes is thus an eigenvector of W: s=Ws%

® In order to make this equation solvable, introduce a ,centrality input” or
.external information® E(v) for every node v: s=E+Ws
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— ok
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Further example: Hubbell index

® weighted, directed graph G=(V,E); weights formalized in adjacency matrix
w

® centralilty s(v) of node v is proportional to sum of centralities s(w) of

adjacent nodes w (multiplied with edge weight connecting these nodes to v).

® centrality vector s of the nodes is thus an eigenvector of W: s=Ws

® In order to make this equation solvable, introduce a ,centrality input® or
Lexternal information® E(v) for every node v: s=E+Ws

® > s=(-W)'E

~ 1k
® |-W is invertible if ;Wconverges &—>the largest eigenvalue of W is less
than one (seg[1]). - i
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® Further example: Random surfer on Web-pages
® Directed unweighted graph G=(V,E)

® Define Markov transition matrix as

I
m if(i,j)e E

=1 0 if@)j)eE

1
—— if deg' () =0
V]
(choose one outgoing link randomly, probability inverse propotional to
out degree of current node; if node is a sink (no outgoing links) choose
a random page)
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® Further example: Random surfer on Web-pages
® Directed unweighted graph G=(V,E)

® Define Markov transition matrix as

| L

m ifi,j)eE
t= 0 if(i,j)eFE
—%—#m§®=0 .

(choose one outgoing link randomly, probability inverse propotional to
out degree of current node; if node is a sink (no outgoing links) choose
a random page)

® Question: is there a unique stationary distribution m? (= in essence is
the chain irreducible and positively recurrent?)

® 3 make it irreducible: T=aT+(1- a)E where E is the matrix with all
entries equal to 1/n (completely stochastic choosing).

® social analog: ,assigning leadership“, ;seeking friends”; jexpert
seeking“ etc. ks

¢ Stationary distributions <= degree centrality: Assume undirected,
unweighted graph with adjacency matrix A; we have then:

4 )
I.rj = y o 77".:: = %
deg(i) > deg(v)
vel .
> deg(i); >4, deol
. _ _ =r v _ (/)
Proof: (nT), = ;ﬂ'il‘g = 3 dea) = 3 dea) = 5 dea(r) =7,

vel’ vel vel’
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® Question: is there a unique stationary distribution ? (= in essence is
the chain irreducible and positively recurrent?)

® > make it irreducible: T=aT+(1- a)E where E is the matrix with all
entries equal to 1/n (completely stochastic choosing).

® social analog: ,assigning leadership®, ,seeking friends®; ;expert
seeking” etc.

° Stationary distributions €< degree centrality: Assume undirected,

unweighted graph with adjacency matrix A; we have then: N
A .
ty, = v o }ri = M
deg(i) Z deg(v)
vel Z deg(z)l‘y Z AU_ -
Proof: (aT), =D mt, =L _er _deg(y) -
: e Z deg(v) Z deg(v) Z deg(v) ’
vel’ vel vel’
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® Question: is there a unique stationary distribution ? (= in essence is
the chain irreducible and positively recurrent?)

® > make it irreducible: T=aT+(1- a)E where E is the matrix with all
entries equal to 1/n (completely stochastic choosing).

® social analog: ,assigning leadership®, ,seeking friends®; ;expert
seeking” etc.

° Stationary distributions €< degree centrality: Assume undirected,
unweighted graph with adjacency matrix A; we have then:

Vo= deg(i)

(= _
Todeg() 7 Dldeg(v) B
velr ;
Sa, T4
- . d
Proof: (nT), =X mt, =L _ _ deg())

T S dep(v) | > deg(v) Y dea(v)

vel vel’ vel

® Question: is there a unique stationary distribution m? (= in essence is
the chain irreducible and positively recurrent?)

® 3 make it irreducible: T=aT+(1- a)E where E is the matrix with all
entries equal to 1/n (completely stochastic choosing).

® social analog: ,assigning leadership“, ;seeking friends”; jexpert
seeking” etc.

¢ Stationary distributions <= degree centrality: Assume undirected,
unweighted graph with adjacency matrix A; we have then:

A” E
Vg = deg(i)

t = =
!odeg(i) ' Y deg(v)
vel de . A
Proof: (nT), ijzi’: e _ ZV Y deg()) :;5
iV Zdeg(v) Zdeg(v) Zdeg(v)
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® Famous ingredient of Google

® Centrality of a web-page depends on the centralities of the pages
linking to it:

e(p)=d 3 DL q_a

T
ge{"In—neighborsof p"}=1"(p) deg (Q)

where d is a damping factor; deg*(q) is the out degree of q.

® Matrix Notation: s

c=dPc+(1-d)LL...)T

where transition matrix Py =1/deg*(j) if (j,i)eE and P;=0 otherwise
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® Famous ingredient of Google

® Centrality of a web-page depends on the centralities of the pages
linking to it:

e(p)=d 3 @) q_a

+
gef{"In—neighborsof p"}=1"(p) deg (q) I

where d is a damping factor; deg*(q) is the out degree of g.

® Matrix Notation: Iy

c=dPc+(1-d)LL..1)7

where transition matrix Py =1/deg*(j) if (j,i)eE and P;=0 otherwise
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® Solving the equation ¢ =d P&+(1-d)(LL..D)" :
®If0<d<1the equation has a unique solution

c=(1-d)1-dP)'(LL..)T

® How do we compute the solution avoiding matrix inversion? - Jacobi

power iteration:
y-J

¢=dY PcV+(1-d)
J

t
or improved variant (Gauss-Seidel iteration): (see [3])

¢M=d (> Pc " +> P )+(1-d)
J<i Jzi

M
® Solving the equation ¢ =d P¢+(1-d)(LL..D" :
k

®1fo<d<1the equation has a unique solution

c=(1-)1-dP)'(L..]D)T

® How do we compute the solution avoiding matrix inversion? 2 Jacobi
power iteration:
(k+1) _ (k)
c, —dZPy.cj +(1-d)
J
¥

or improved variant (Gauss-Seidel iteration): (see [3])

¢ M=d (> P +> Py +(1-d)
Jj<i Jjzi
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® Solving the equation ¢ =d P¢+(1-d)(LL..D)" :
i
®I1f0o<d<1the equation has a unique solution

c=(1-d)1-dP)'(LL..)T

® How do we compute the solution avoiding matrix inversion? - Jacobi
power iteration:

g7

"M=dy Pe b (1-d)
J

or improved variant (Gauss-Seidel iteration): (see [3])
¢M=d (> Pc " +> P )+(1-d)

i g
J<i Jzi
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® Solving the equation ¢ =d P¢+(1-d)(LL..D" :
s
®1fo<d<1the equation has a unique solution

c=(1-)1-dP)'(L..]D)T

® How do we compute the solution avoiding matrix inversion? 2 Jacobi
power iteration:

gJ

¢ =d S P ® +(1-d)
J

or improved variant (Gauss-Seidel iteration): (see [3])

¢ M=d (> P +> Py +(1-d)
Jj<i Jjzi
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® Solving the equation ¢ =d P¢+(1-d)(LL..D)" :

®If0<d<1the equation has a unique solution

c=(1-d)1-dP)'(LL..)T

® How do we compute the solution avoiding matrix inversion? - Jacobi
power iteration:

u-J

" =d S Pe® +(1-d)
J

or improved variant (Gauss-Seidel iteration): (see [3])

¢ =d (3 P, 3 BePy+(1-d)
J<i Jzi

Ik

¢ Cliques are very “strict” 2> Alternative candidates for groups:
Distance based structures:

® U is N-clique iff vYu,v e U : distg(u,v) €N (non-local def.t)
® U is N-club iff diam(G([U])) £ N

® U is N-clan iff U is maximal N-clique and diam(G([U])) =N

® Criticisms:

® Since dist is evaluated w.r.t. to G and not G([U]) (thus N-cliques
are not local structures), N-cliques need not even be connected and
can have a diameter diam(G([U]) > N
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¢ Cliques are very “strict” - Alternative candidates for groups: ® Uis N-clique iff Yu,v eV : distg(uv) <N
Distance based structures: ® Uis N-club iff diam(G([U])) =N

® Uis N-clan iff U is maximal N-clique and diam(G([U])) N

® U is N-clique iff Vu,v € U : distg(u,v) €N (non-ocal def..)

® Uis N-club iff diam(G([U])) £ N ®> N-clan: restrict dist-condition to paths of nodes within the structure:
easy to find (just drop all n-cliques with diameter greater than N)

® U is N-clan iff U is maximal N-clique and diam(G([U])) =N °
- N-club: regard all induced graphs with diameter less than N:

harder to find
® Criticisms: . &
It can be shown / seen from the def.:
® Since dist is evaluated w.rt. to G and not G([U]) (thus N-cliques - all N-clans are N-cliques; _
are not local structures), N-cliques need not even be connected and - all N-clubs are contained within N-cliques;
can have a diameter diam(G([U]) > N - all N-clans are n-clubs
-- there are N-clubs that are not N-clans
CE @
N-Cliques, N-Clubs, N-Clans N-Cliques, N-Clubs, N-Clans

® Uis N-clique iff Yu,v eV : distg(uv) <N ® Uis N-clique iff Yu,v eV : distg(u,v) <N

® Uis N-club iff diam(G([U])) <N ® Uis N-club iff diam(G([U])) <N

® Uis N-clan iff U is maximal N-clique and diam(G([U])) <N ® Uis N-clan iff U is maximal N-clique and diam(G([U])) <N

2 7 ! 2 7 1
2 3 2 3
3 3
1 4 1 4
K
4 5 4 5
5 6 6 5 6 6
cliques: {1, 2, 3}, {1, 3, 5}, ) cliques: {1, 2, 3}, {1, 3, 5}, )
{3, 4,5, 6} 2-cliques: {1, 2, 3, 4,5}, {2, 3,4, 5, 6} {3,4,5, 6} 2-cliques: {1,2,3,4,5},{2, 3,4, 5,6}
2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3. 4, 5, 6}
2-clan: {2, 3,4, 5, 6} 2-clan: {2, 3, 4, 5, 6}
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N-Cliques, N-Clubs, N-Clans

® Uis N-clique iff Yu,veU: distg(uv) <N
® Uis N-club iff diam(G([U])) =N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) <N

® Further criticism:

® Small distances are characteristic even for large social networks
(cmp. 6 degrees) =2 N-cliques, N-clubs and N-clans may not e
socially meaningful as groups but may be interesting for modeling
social influence/neighbourhood spheres (e.g. regarding information
flows (compare [13], p. 263))

® These constructs are not generally closed under exclusion and
are not nested (socially meaningful characteristics that cliques
possess)



