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Distances: Eccentricity

¢ Example: Facility location problems: Objective function on d(u,v): e.g.
minimax (minimize maximal distance (e.g.: hospital emergency)) = can
be mapped to social case

® For the moment: G is undirected and unweighted (e.g. “friendship”).
Mapping to weighted and / or directed case is possible.

¢ Eccentricity e(u)=max{d(u,v); veV}
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Distances: Centroids

® Competitive objective: Given number ¢ ** e to open a
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store (Customers will just choose store b . ngesenen stance)?
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® Social Problem: Example: find “social ¢ > computer
scientists try to find a partner at a compu  Esferensaanicnt at social
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® Formalization: For u, v : ,(v)=number « s tation beenden uthantov;
If one salesman selects u and competitor selects v as locations, the first

will have
mv)+;( V=7, () =7, (1) = ;| V) +;(m)—m(u))

customers

® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche” (do computer
scientists try to find a partner at a computer science party or at social
science parties?) ©

® Formalization: For u, v : y,(vi=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first
will have

1 1 |
n(V)+5(| Vi=r.(m-y, (@)= 5\ Vi AR AC)

customers
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® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche” (do computer
scientists try to find a partner at a computer science party or at social
science parties?) ©

® Formalization: For u, v : y,(v)J=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first
will have

mv)+;( V=7, () =7, (1) = ;| V) +;(m)—m(u))

b
customers

H & ]
Distances: Centroids

® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche” (do computer
scientists try to find a partner at a computer science party or at social
science parties?) ©

® Formalization: For u, v : y,(vi=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first
will have
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Distances: Centroids

® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche” (do computer
scientists try to find a partner at a computer science party or at social
science parties?) ©

® Formalization: For u, v : y,(v)J=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first
will have

mv)+;( V=7, () =7, (1) = ;| V) +;(m)—m(u))

customers [N

® - Competitor will want to minimize
J@v)=y,0 =y, @)

® 5 Possible centrality index: First salesman knows the strategy of the
competitor and calculates for each location the worst case:

e(u)y=min {f(u,v):veV /{u}}

K
c(u) is called centroid value: measures the advantage of location u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v
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® - Competitor will want to minimize
J@.v)=y,(0) =7, @)

® > Possible centrality index: First salesman knows the strategy of the
competitor and calculates for each location the worst case:

c(u)y=min {f(u,v):veV /{u}}

® c(u) is called centroid value: measures the advantage of location u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v
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® - Competitor will want to minimize
S @)=y, )=y, @)

® 5 Possible centrality index: First salesman knows the strategy of the
competitor and calculates for each location the worst case:

e(u)y=min {f(u,v):veV /{u}}

® c(u) is called centroid value: measures the advantage of location u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v
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Shortest Paths: Stress

® - Competitor will want to minimize
J@v)=y,0)=7r,@)

® > Possible centrality index: First salesman knows the strategy of the
competitor and calculates for each location the worst case:

c(u)y=min {f(u,v):veV /{u}}

s
® c(u) is called centroid value: measures the advantage of location u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v

® Heuristic: If a vertex is part of many shortest paths 2 “much
information will run through it” if information is routed along shortest
paths

® Social analogon: People that are asked to contribute to a workflow
more often than others

® 5 A vertex v is more central the more shortest paths run through it.
Let o,,(v) denote the number of shortest paths from node a to node b
containing'v. a,,(v) can be >1 if there there are several paths with the
same minimal length

ress —eay= > Y 6,0

Centra“ty' asV,azv beV: by

&
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Shortest Paths: Shortest Path Betweenness

® Heuristic: If a vertex is part of many shortest paths - “much
information will run through it” if information is routed along shortest
paths

® Social analogon: People that are asked to contribute to a workflow
more often than others

® > Avertex v is more central the more shortest paths run through it.
Let o,,(v) denote the number of shortest paths from node a to node b
containing v. g, (v) can be >1 if there there are several paths with the
same minimal length

e, =Y Yo,

Centra“ty' acV i a#v beV ;b=v
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Shortest Paths: Shortest Path Betweenness

® Again assume that communication (workflows etc.) happen along
shortest paths only. Let

O-ab (V)

O-ab

0,,(v)=

i
with @, : total number of shortest paths between nodes a and b.

Interpretation. Probability that v is involved in a communication between
aandb

@
Shortest Paths: Shortest Path Betweenness

® Shortest Path Betweenness (SPB) centrality is then:

c(M=2.>" 55V

a#v b#v

° Interpretation: Control that v exceeds on the communication in the
graph
® Also applicable to disonnected graphs

® Algorithm by Ulrik Brandes computes SPB in O(|V||E| + |V|?log|V])
time

® Define c_SPB for edges analogously

c@=Y.> 5,(e)

acV beV

® Possible: Interpret quantity §ab (v) as general relative information flow
through v (“rush”)

® Other variants: Instead of shortest paths between a and b regard
® the set of all paths
® the set of the k-shortest paths (interesting for social case; choose small k)
® the set of the k-shortest node disjoint paths
® the set of paths not longer than (1+g)d(a,b)
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Deriving edge centralities from vertex centralities

L. ” »
Deriving edge centralities from vertex centralities

® What we have seen so far: Various centrality measures mostly for
vertices (based on degree, closeness, betweenness)

® > Formal way to translate a given vertex centrality index to a
corresponding edge centrality: Apply the given vertex cer%rality toa
transformed version of G, the edge graph N

® Given original G =(V,E) then the edge graph G’ = (E,K) is defined by
taking original edges as vertices. Two original edges are connected in
G’ if they are originally incident to the same original node.

® Size of G’ may be quadratic (w.r.t. number of hodes) compared to G

Deriving edge centralities from vertex centralities

® What we have seen so far: Various centrality measures mostly for
vertices (based on degree, closeness, betweenness)

® > Formal way to translate a given vertex centrality index to a
corresponding edge centrality: Apply the given vertex centrality to a
transformed version of G, the edge graph

® Given original G =(V,E) then the edge graph G’ = (E,K) is defined by
taking original edges as vertices. Two original edges are connected in
G’ if they are originally incident to the same original node.

s

® Size of G’ may be quadratic (w.r.t. number of nodes) compared to G

Deriving edge centralities from vertex centralities

G GJ a GJJ

c b

® Remember: Vertex stress centrality for node x: Number of shortest
paths that use x; Straightforward version for edge e: Number of shortest
paths that use e;

*> Upper Example: G: Stress centrality of edge a would be 3; But in
edge graph G’ stress centrglity of original edge a (now a node) is 0.

® > Formal translations of vertex centrality indices to edge centralities
with edge graphs are not well suited for all purposes

® > Introduce incidence graph G”: Each original edge is split by new
“edge vertex” that represents the edge - Now vertex indices can be
applied, preserving the intuition.

G G: a Gﬂ

¢ b

® Remember: Vertex stress centrality for node x: Number of shortest
paths that use x; Straightforward version for edge e: Number of shortest
paths that use e;

*> Upper Example: G: Stress centrality of edge a would be 3; But in
edge graph G’ stress centrality of original edge a (now a node) is 0.

® > Formal translations of vertex centrality indices to edge centralities
with edge graphs are not well suited for all purposes

® > Introduce incidence graph G”: Each original edge is split by new
“edge vertex” that represents the edge - Now vertex indices can be
applied, preserving the intuition.
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Deriving edge centralities from vertex centralities

G GJ a GJJ
Ly
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® Remember: Vertex stress centrality for node x: Number of shortest
paths that use x; Straightforward version for edge e: Number of shortest
paths that use e;

*> Upper Example: G: Stress centrality of edge a would be 3; But in
edge graph G’ stress centrality of original edge a (now a node) is 0.

® > Formal translations of vertex centrality indices to edge centralities
with edge graphs are not well suited for all purposes

® > Introduce incidence graph G”: Each original edge is split by new

“edge vertex” that represents the edge - Now vertex indices can be
applied, preserving the intuition.

Deriving edge centralities from vertex centralities

G G: a Gﬂ

¢ b

® Remember: Vertex stress centrality for node x: Number of shortest
paths that use x; Straightforward version for edge e: Number of shortest
paths that use e;

*> Upper Example: G: Stress centrality of edge a would be 3; But in
edge graph G’ stress centrality of original edge a (now a node) is 0.

® > Formal translations of vertex centrality indices to edge centralities
with edge graphs are not well suited for all purposes

® > Introduce incidence graph G”: Each original edge is split by new
“edge vertex” that represents the edge - Now vertex indices can be
applied, preserving the intuition.

Vitality

G GJ a GJJ

c b

® Remember: Vertex stress centrality for node x: Number of shortest
paths that use x; Straightforward version for edge e: Number of shortest
paths that use e;

*> Upper Example: G: Stress centrality of edge a would be 3; But in
edge graph G’ stress centrality of original edge a (now a node) is 0.

® > Formal translations of vertex centrality indices to edge centralities
with edge graphs are not well suited for all purposes

® > Introduce incidence graph G”: Each original edge is split by new
“edge vertex” that represents the edge - Now vertex indices can be
applied, preserving the intuition.

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

*> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})
i

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow fis,#) from node s (source) to node t (sink) is
defined as:

fsn= Y e = > f@

ec{Out—Edgesof s}  ec{In—Edgesof t}

where the local flows J respect capacity contraints: (< f(e) <w(e)

and balance conditions: - -
VveV\{s,1}: > fle)= > f(e

ec{Out—Edges of v} ec{In—Edges of v}
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Vitality

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})
ks
® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow ffs.#) from node s (source) to node t (sink) is
defined as:

fsn=" Y fe = > f@

ec{Out—Edgesof s}  ec{In-Edgesof 1}

where the local flows [ respect capacity contraints: (< f(e) <w(e)

and balance conditions: _ ~
PACEEIWAC)

YvelV\{s,t}:
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Vitality

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

*> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})
K

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow fis,#) from node s (source) to node t (sink) is
defined as:

fsn= Y e = > f@

ec{Out—Edgesof s}  ec{In—Edgesof t}

where the local flows J respect capacity contraints: (< f(e) <w(e)

and balance conditions: — ~
dfl@= > [

ec{Out—Edges of v} ec{In—Edges of v}

VveV \{s,t}:

Vitality

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
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defined as: Iy 5
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and balance conditions: _ ~
Y@= > f(e
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ec{Out—Edges of v} ec{In—Edges of v}

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

*> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow fis,#) from node s (source) to node t (sink) is
defined as:

fsn= Y e = > f@

ec{Out—Edgesof s}  ec{In—Edgesof t}

where the local flows; f respect capacity contraints: (< f(e) <w(e)
and balance conditions: . .
VveV\{s,1}: Y fe= > f(e

ec{Out—Edges of v} ec{In—Edges of v}
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Vitality

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow ffs.#) from node s (source) to node t (sink) is
defined as:

fsn=" Y fe = > f@

ec{Out—Edgesof s}  ec{In-Edgesof 1}

~ - i
where the local flows [ respect capacity con%raints: 0< f(e)<w(e)

and balance conditions: _ ~
PACEEIWAC)

YvelV\{s,t}:
ec{Out—Edges of v} ec{In—Edges of v}

Vitality

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

*> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow fis,#) from node s (source) to node t (sink) is
defined as:

fen= Y flo = Y[
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Vitality

® Intuition: Measure impoﬂaﬁce of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

s
> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow ffs.#) from node s (source) to node t (sink) is
defined as:

fsn=" Y fe = > f@

ec{Out—Edgesof s}  ec{In-Edgesof 1}
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and balance conditions: _ ~
Y@= > f(e

YvelV \{s,t}:
ec{Out—Edges of v} ec{In—Edges of v}

® Intuition: Measure impoﬂaﬁce of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

.

*> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})
s
® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow fis,#) from node s (source) to node t (sink) is
defined as:

fsn= Y e = > f@
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¢ Computing a flow f: E 2 R of maximum value (tweaking the local
flows): O(|V] |E| log(]V|¥|E])) (Algorithm by Goldberg & Tarjan (see
(21))

® Now define quality measure by e.g.:
ks

q(G)= > max f(s.0)

stV

® Social analog of flow: Workflow, Information-flow, “Doing favors
flow” etc.

Vitality

® Besides vitality-based centrality c(x) = v(x) = q(G) - q(G\{x}) we
may also define a centrality as max-flow betweenness:
denote: /,,(G)=max, [(s.0)

we may then define:

(@) - f,(G\
C(u): tEVZ¢ tf;( )ff((g) {lk})

® The numerator denotes the amount of flow that must go through
node u

Vitality

® Example 2: Mobile (Peer to Peer) communication-network: Each
node should be connected to each other node by as few
intermediaries as possible. 2 quality measure: Wiener Index

q(G) =), D d(v,w) %

velV wel’
® Possible: write Wiener Index with t[?]e help of closeness centrality
Ce(v) .
9q(G)y=), ——
2.0

® Define centrality ,closeness vitality" of graph element x as vitality:

c(x) = q(G)—q(G\{x})

® Example 2: Mobile (Peer to Peer) communication-network: Each
node should be connected to each other node by as few
intermediaries as possible. 2 quality measure: Wiener Index

9(G)=). > d(v,w)

veV welV
® Possible: write Wiener Index with the help of closeness centrality
Ce(v) .
q(G)= ——
vel CC (V) Q

® Define centrality ,closeness vitality” of graph element x as vitality:

c(x) =q(G)—q(G\{x})
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Stress Centrality as Vitality

® Example 2: Mobile (Peer to Peer) communication-network: Each
node should be connected to each other node by as few
intermediaries as possible. 2 quality measure: Wiener Index

g(G)=>> d(v,w)

vel wel’

® Possible: write Wiener Index with the help of closeness centrality

Ce(V)
q(G) = Z

tEV c

® Define centrality ,closeness vitality" of graph element x as vitality:

c(x) = ¢(G)—q(G\ {x})%

Stress Centrality as Vitality

® We had: stress centrality of v or e is equal to humber of shortest
paths through v or e

Coness() = D D 040 Coress (€) =D ()

acl,a#v beV ;b#v acV belV

kg

® Intuition: cl}g (v) seems to measure the number of shortest paths
that would be Iost if v wasn't avaliable any more

® Why can‘t we directly use ¢, as a graph quality index to construct
a vitality index ?

® >Because actual number of shortest paths can INCREASE if e.g.
edge is taken away

Stress Centrality as Vitality

® Example

®Number of shortest paths:
(18 of them have increased in length)

® 0.s=4 (length 4)

® Number of shortest paths:

® Number of shortest paths
containing e: 8 [

® 6.4=1 (length 3)

® Example

i

®Number of shortest paths:
(18 of them have increased in length)

® 6.4=4 (length 4)

®Number of shortest paths:

®Number of shortest paths
containing e: 8

O.=1 (length 3)



Stress Centrality as Vitality

Critique on Betweenness Based Centralities

® > In order to define a vitality-like version of stress: Consider only
those shortest paths that haven‘t changed their length:

cv.i!afity(vﬂ G) = Cs!ress (V> G) - cstress (VJ G \‘ {V})
with

Cors .G\ = Y Y o, ldy(a,b) =dy,(a,b)f

acV ,a#v beV ;b#v

(Ilverson notation)

Critique on Betweenness Based Centralities

® major critique: Max-Flow betweenness centrality (suggested to
counteract this drawback) may exhibit similar problems

® here: special Max-Flow betweenness
centrality mfb:

- limit edge capacity to one (b) A

-- mfb(i) := maximum possible flow

through i over all possible solutions to i Growpl :C + Group2
the s-t-maximum flow problem, averaged — T .
overall sand t.

(b) In calculations of flow betweenness, vertices A and B in
this configuration will get high scores while vertex C will not.

Source: [9]

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® major critique: Max-Flow betweenness centrality (suggested to
counteract this drawback) may exhibit similar problems

® here: special Max-Flow betweenness
centrality mfb: N

-- limit edge capacity to one (b) A

-- mfb(i) := maximum possible flow
through i over all possible solutions to

;' Group 1 " -aC Group 2 ‘
the s-t-maximum flow problem, averaged . i :1

B
over all s and t.

(b) In calculations of flow betweenness, vertices A and B in
this configuration will get high scores while vertex C will not.

Source: [9]

® flow of electric current in a resistor network;
V; = voltage (potential) at vertex i

® o Current Flow betweenness cfb centrality : cfb(i) := amount of
current that flows through i in this setup, averaged over all s and t.

one unit of current in Ay >Z

y VAT AV e e VAVAVAVA
,\.\1\ \

o« one unit of current out



Random Walk Centrality == Current Flow Btw. Centrality (see [5])

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® flow of electric current in a resistor network;
V, = voltage (potential) at vertex i

® . Current Flow betweenness cfb centrality : cfb(i) := amount of
current that flows through i in this setup, averaged over all s and t.

one unit of current in ,\/\
AN ZL/

U SR
O

g

o« one unit of current [yut

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

E :1”(1: — I'}) = (igs — (55(.

7
if there is an edge between ¢ and j,
otherwise,

if i =,

one unit of current in X/\ ya
otherwise,

v
L\éf
WAVAVAVA

t
L EVAVAVAVA
N \
o« one unit of current out

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

%S A (Vi Vi) = 6ie — e
J

otherwise,

if i =,

one unit of current in \AZ
otherwise.

t

L VAVAVAVA
e \

o« one unit of current out

r
@\4‘:\
VIVAAA

if there is an edge between i and j,

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

> Ay (Vi = V) = bis = G

7
) 1 if there is an edge between ¢ and j,
Ay = .
- 0 otherwise,
one unit of current in X/\Z 5= 1 iti=j,
Z L 0 otherwise.

v
L\éf
WAVAVAVA

t
L EVAVAVAVA
N \
o« one unit of current out



Random Walk Centrality == Current Flow Btw. Centrality (see [5])

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

E :L,(-[: — 1']) = O('_q — r)it.

7
if there is an edge between i and j,
otherwise,

ifi = j.

one unit of current in
otherwise.

t

L VAVAVAVA
e \

one unit of current out

r
@\4‘:\
VIVAAA

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:
D Ay(Vi = Vi) = bis — dut,
3 K
) 1 if there is an edge between ¢ and j,
Ay = { 0

otherwise,

1 if i =,

one unit of current in
otherwise,

t

L EVAVAVAVA
W \

one unit of current out

v
L\éf
WAVAVAVA

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

N AG(Vi - V) = b —

J Iy
1. = 1 if there is an edge between i and j,
A 0 otherwise,
one unit of current j/\z 5= 1 ifi =j.
D ¥ 0 otherwise.

t

L VAVAVAVA
e \

one unit of current out

r
@\4‘:\
VIVAAA

> i Aij = k. the degree of vertex i

K
D AV = V) =i — 0 (D-A)-V=s
> —
“Graph Laplacian”

D is the diagonal matrix with elements I};; = k;

+1 for i = s,
source vector s s§; = -1 for i =t,
0 otherwise.

V=(D,—A,)""s
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Random Walk Centrality == Current Flow Btw. Centrality (see [5])

> j Aij = ky, the degree of vertex i
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(D-A)- V=5
H_)

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. 2>
remove the v-th row and colu%n (since V,=0) = now invertible

(matrix inversion: O(n3)) N

V=(D,-A,) ' s

let us now add a vth row and column back into (D, — A,)~!
with values all equal to zero.
The resulting matrix we will denote T.

— VY =T -1,

—— current flow at node i: Ij(m = é Z Aijﬂ';{m - T-‘}(St)|
J
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(D-A)-V=s
%(_)

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

> A(Vi— Vi) =4
i

1. = { 1 if there is an edge between i and j,
B W 0 otherwise,
\
one unit of current in 5. — 1 iti=j,
¥ 0 otherwise,

\mew 4
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Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. >
remove the v-th row and column (since V,=0) - now invertible

V=(D,-A,)" (matrix inversion: O(n?))

let us now add a vth row and column back into (D, — A,) !
with values all equal to zero.

The resulting matrix we will denote T.

r(st ‘
— I",-( = Tis — Tt

o« one unit of current out . current flow at node i- I?(St) — é Z ‘_1” |I*1(bf) _ I;(E-T)I
j
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(D _ A) .V =58 ® current flow at node i:
H_)

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. >
remove the v-th row and column (since V,=0) = now invertible

V=(D,—A,)"

(matrix inversion: O(n3))

let us now add a vth row and column back into (D, — A,)"*
with values all equal to zero.
The resulting matrix we will denote T.

— r(%f) =Tie — Tt

— current flow at node i: 1" :[% Z Ay |9 — 1[J(;)|
J

(st A(st) Qf)
Iz):lZ%J“( e
- %Zﬁa_fliﬂs—

J

unit current flow at nodes s and t:

Tt — Ts + Tt

for i #£ s.t.
°

19 =1, 19 =1,

¢ cfb(i) (denoted as b;) is then:

(takes O(m n?) for all i) —
(plus matrix inversion:)
O((m+n) n?) for everything

(st)
_ Z.q(t Ii

- %n{_n -1)
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® current flow at node i:
(st) _ 1 y (st) ~(st)
L =33 AV = v

(4

J
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;

® unit current flow at nodes s and t:

® cfb(i) (denoted as b;) is then:

B
5 (s (takes O(m n2) for all i) —
h; = &s<t’r (plus matrix inversion:)
%n(u - 1) O((m+n) n?) for everything
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® current flow at node i:
(st) _ 1 y (st) -(st)
=33 AV = v

T
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J
=33 Ay|Tie = Tie = Tje + Ty, for i # s.t.
J

® unit current flow at nodes s and t:

159 =1, 1Y =1.
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¢ cfb(i) (denoted as b;) is then:

(takes O(m n?) for all i) —
(plus matrix inversion:)
O((m+n) n?) for everything %
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_ Z.q(t Ii

o %n{_n -1)

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® current flow at node i:
(st) _ 1 / r(st) F(st)
I =3 E -42'1“'1' — I-'__j |

(4

J
= 3> Ay|Tie = Tt — Tja + Tje|.  for i # s.t.
;

® unit current flow at nodes s and t:

® cfb(i) (denoted as b;) is then:

(takes O(m n?) for all i) —
(plus matrix inversion:)
O((m+n) gz) for everything

(st)
_ Z.-:({ Ii

C %n(n —1)

® ofp == rando% walk betweenness centrality (rwb):

¢ rwb(i): move around ,messages”: start (absorbing) random walk at s,

end at t:
rwb(i):= net number of times that a message passes through i on

its journey (averaged over a large number of trials and averaged
over s, t)
(,net* number of times: ,cancel back and fourth passes®)

® ifini, probability that in next step j:

M;; = A_,J for j #1,
M=A D! with D = diag(k,)

Dzi == 'I"i



