Script generated by TTT

Title: profile1 (28.05.2013)

Date: Tue May 28 12:04:37 CEST 2013

Duration: 86:47 min

Pages: 67

Distances: Centroids

- Competitive objective: Given number of store (Customers will just choose store b
- Social Problem: Example: find "social € scientists try to find a partner at a compu science parties?) ☺
- Formalization: For u, v: $\gamma_u(v)$ =number Anhalten Präsentation beenden u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_{u}(v) + \frac{1}{2}(|V| - \gamma_{u}(v) - \gamma_{v}(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_{u}(v) - \gamma_{v}(u))$$

customers

- Example: Facility location problems: Objective function on d(u,v): e.g. minimax (minimize maximal distance (e.g.: hospital emergency)) \rightarrow can be mapped to social case
- For the moment: G is undirected and unweighted (e.g. "friendship"). Mapping to weighted and / or directed case is possible.
- Eccentricity e(u)=max{d(u,v); v∈V}

e to open a

computer

at social

stance)?

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche" (do computer scientists try to find a partner at a computer science party or at social science parties?) ©
- Formalization: For u, v : $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_{u}(v) + \frac{1}{2}(|V| - \gamma_{u}(v) - \gamma_{v}(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_{u}(v) - \gamma_{v}(u))$$

customers

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche" (do computer scientists try to find a partner at a computer science party or at social science parties?) ☺
- Formalization: For u, v : $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_u(v) + \frac{1}{2}(|V| - \gamma_u(v) - \gamma_v(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_u(v) - \gamma_v(u))$$

customers

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche" (do computer scientists try to find a partner at a computer science party or at social science parties?) ☺
- Formalization: For u, v : $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_u(v) + \frac{1}{2}(|V| - \gamma_u(v) - \gamma_v(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_u(v) - \gamma_v(u))$$

customers

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche" (do computer scientists try to find a partner at a computer science party or at social science parties?) ☺
- Formalization: For u, v : $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_{u}(v) + \frac{1}{2}(|V| - \gamma_{u}(v) - \gamma_{v}(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_{u}(v) - \gamma_{v}(u))$$

customers

◆Competitor will want to minimize

$$f(u,v) = \gamma_u(v) - \gamma_v(u)$$

→ Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

D_r

 c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v ◆Competitor will want to minimize

$$f(u,v) = \gamma_u(v) - \gamma_v(u)$$

10

◆ Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

 c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v ◆Competitor will want to minimize

$$f(u, v) = \gamma_u(v) - \gamma_v(u)$$

◆ Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

• c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v

Distances: Centroids

◆Competitor will want to minimize

$$f(u,v) = \gamma_u(v) - \gamma_v(u)$$

◆ Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

 c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v

Shortest Paths: Stress

- Heuristic: If a vertex is part of many shortest paths → "much information will run through it" if information is routed along shortest paths
- Social analogon: People that are asked to contribute to a workflow more often than others
- A vertex v is more central the more shortest paths run through it. Let $\sigma_{ab}(v)$ denote the number of shortest paths from node a to node b containing v. $\sigma_{ab}(v)$ can be >1 if there there are several paths with the same minimal length

stress centrality:
$$c(v) = \sum_{a \in V: a \neq v} \sum_{b \in V: b \neq v} \sigma_{ab}(v)$$

N.

- ullet Heuristic: If a vertex is part of many shortest paths ullet "much information will run through it" if information is routed along shortest paths
- Social analogon: People that are asked to contribute to a workflow more often than others
- A vertex v is more central the more shortest paths run through it. Let $\sigma_{ab}(v)$ denote the number of shortest paths from node a to node b containing v. $\sigma_{ab}(v)$ can be >1 if there there are several paths with the same minimal length

stress centrality:
$$c(v) = \sum_{a \in V; a \neq v} \sum_{b \in V; b \neq v} \log \sigma_{ab}(v)$$

Shortest Path Betweenness (SPB) centrality is then:

$$c(v) = \sum_{a \neq v} \sum_{b \neq v} \delta_{ab}(v)$$

- Interpretation: Control that v exceeds on the communication in the graph
- Also applicable to disonnected graphs
- Algorithm by Ulrik Brandes computes SPB in $O(|V||E| + |V|^2 log|V|)$ time

 Again assume that communication (workflows etc.) happen along shortest paths only. Let

$$\delta_{ab}(v) = \frac{\sigma_{ab}(v)}{\sigma_{ab}}$$

R

with σ_{ab} : total number of shortest paths between nodes a and b.

Interpretation. Probability that v is involved in a communication between a and b

Shortest Paths: Shortest Path Betweenness

Define c_SPB for edges analogously

$$c(e) = \sum_{a \in V} \sum_{b \in V} \delta_{ab}(e)$$

- Possible: Interpret quantity $\delta_{ab}(v)$ as general relative information flow through v ("rush")
- Other variants: Instead of shortest paths between a and b regard
 - the set of all paths
 - the set of the k-shortest paths (interesting for social case; choose small k)
 - the set of the k-shortest node disjoint paths
 - the set of paths not longer than (1+s)d(a,b)

Deriving edge centralities from vertex centralities

- What we have seen so far: Various centrality measures mostly for vertices (based on degree, closeness, betweenness)
- ◆ Formal way to translate a given vertex centrality index to a corresponding edge centrality: Apply the given vertex centrality to a transformed version of G, the edge graph
- Given original G =(V,E) then the edge graph G' = (E,K) is defined by taking original edges as vertices. Two original edges are connected in G' if they are originally incident to the same original node.
- Size of G' may be quadratic (w.r.t. number of nodes) compared to G

Deriving edge centralities from vertex centralities

- What we have seen so far: Various centrality measures mostly for vertices (based on degree, closeness, betweenness)
- ◆ Formal way to translate a given vertex centrality index to a corresponding edge centrality: Apply the given vertex centrality to a transformed version of G, the edge graph
- Given original G =(V,E) then the edge graph G' = (E,K) is defined by taking original edges as vertices. Two original edges are connected in G' if they are originally incident to the same original node.

R

Size of G' may be quadratic (w.r.t. number of nodes) compared to G

Deriving edge centralities from vertex centralities

- Remember: Vertex stress centrality for node x: Number of shortest paths that use x; Straightforward version for edge e: Number of shortest paths that use e;
- → Upper Example: G: Stress centrality of edge a would be 3; But in edge graph G' stress centrality of original edge a (now a node) is 0.
- → Formal translations of vertex centrality indices to edge centralities with edge graphs are not well suited for all purposes
- → Introduce incidence graph G": Each original edge is split by new "edge vertex" that represents the edge → Now vertex indices can be applied, preserving the intuition.

Deriving edge centralities from vertex centralities

- Remember: Vertex stress centrality for node x: Number of shortest paths that use x; Straightforward version for edge e: Number of shortest paths that use e;
- → Upper Example: G: Stress centrality of edge a would be 3; But in edge graph G' stress centrality of original edge a (now a node) is 0.
- → Formal translations of vertex centrality indices to edge centralities with edge graphs are not well suited for all purposes
- → Introduce incidence graph G": Each original edge is split by new "edge vertex" that represents the edge → Now vertex indices can be applied, preserving the intuition.

Deriving edge centralities from vertex centralities

- Remember: Vertex stress centrality for node x: Number of shortest paths that use x; Straightforward version for edge e: Number of shortest paths that use e;
- → Upper Example: G: Stress centrality of edge a would be 3; But in edge graph G' stress centrality of original edge a (now a node) is 0.
- → Formal translations of vertex centrality indices to edge centralities with edge graphs are not well suited for all purposes
- → Introduce incidence graph G": Each original edge is split by new "edge vertex" that represents the edge → Now vertex indices can be applied, preserving the intuition.

Deriving edge centralities from vertex centralities

- Remember: Vertex stress centrality for node x: Number of shortest paths that use x; Straightforward version for edge e: Number of shortest paths that use e;
- → Upper Example: G: Stress centrality of edge a would be 3; But in edge graph G' stress centrality of original edge a (now a node) is 0.
- → Formal translations of vertex centrality indices to edge centralities with edge graphs are not well suited for all purposes
- → Introduce incidence graph G": Each original edge is split by new "edge vertex" that represents the edge → Now vertex indices can be applied, preserving the intuition.

Deriving edge centralities from vertex centralities

- Remember: Vertex stress centrality for node x: Number of shortest paths that use x; Straightforward version for edge e: Number of shortest paths that use e;
- → Upper Example: G: Stress centrality of edge a would be 3; But in edge graph G' stress centrality of original edge a (now a node) is 0.
- ◆ Formal translations of vertex centrality indices to edge centralities with edge graphs are not well suited for all purposes
- → Introduce incidence graph G": Each original edge is split by new "edge vertex" that represents the edge → Now vertex indices can be applied, preserving the intuition.

Vitality

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):
 - \rightarrow Vitality v(x) of graph element x : v(x) = q(G) q(G\{x})

R

- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s,t\}: \sum_{e \in \{Out-Edges\ of\ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges\ of\ v\}} \widetilde{f}(e)$$

Vitality

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):
 - → Vitality v(x) of graph element x : v(x) = q(G) q(G\{x})
- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s,t\} : \sum_{e \in \{Out-Edges \ of \ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ v\}} \widetilde{f}(e)$$

Vitality

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):
 - \rightarrow Vitality v(x) of graph element x : v(x) = q(G) q(G\{x})
- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s,t\} : \sum_{e \in \{Out-Edges \ of \ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ v\}} \widetilde{f}(e)$$

Vitality

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):
 - ◆ Vitality v(x) of graph element x : v(x) = q(G) q(G\{x})
- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s,t\} : \sum_{e \in \{Out-Edges\ of\ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges\ of\ v\}} \widetilde{f}(e)$$

Vitality

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):
 - \rightarrow Vitality v(x) of graph element x : v(x) = q(G) q(G\{x})
- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out - Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In - Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows, \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s,t\} : \sum_{e \in \{Out-Edges\ of\ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges\ of\ v\}} \widetilde{f}(e)$$

Vitality

• Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):

• \rightarrow Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

• Example 1 for quality measure q: Flow:

• Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

 $\forall v \in V \setminus \{s,t\}$: $\sum_{e \in \{Out-Edges \ of \ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ v\}} \widetilde{f}(e)$

Vitality

• \rightarrow Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

Example 1 for quality measure q: Flow:

• Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s,t\} : \sum_{e \in \{Out-Edges \ of \ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ v\}} \widetilde{f}(e)$$

Vitality

• Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):

 \rightarrow Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

Example 1 for quality measure q: Flow:

• Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out - Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In - Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

 $\forall v \in V \setminus \{s,t\} : \sum_{e \in \{Out-Edges\ of\ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges\ of\ v\}} \widetilde{f}(e)$

Vitality

• Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):

• \rightarrow Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

V3

Example 1 for quality measure q: Flow:

• Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out - Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In - Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s,t\} : \sum_{e \in \{Out-Edges\ of\ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges\ of\ v\}} \widetilde{f}(e)$$

- Computing a flow f: $E \to \mathbb{R}$ of maximum value (tweaking the local flows): $O(|V| |E| \log(|V|^2/|E|))$ (Algorithm by Goldberg & Tarjan (see [2]))
- Now define quality measure by e.g.:

$$q(G) = \sum_{\substack{s,t \in V \\ k}} \max f(s,t)$$

• Social analog of flow: Workflow, Information-flow, "Doing favors flow" etc.

• Besides vitality-based centrality $c(x) = v(x) = q(G) - q(G\setminus\{x\})$ we may also define a centrality as max-flow betweenness: denote: $f_{st}(G) = \max_G f(s,t)$ we may then define:

$$c(u) = \sum_{s,t \in V: u \neq s,t} \frac{f_{st}(G) - f_{st}(G \setminus \{u\})}{f_{st}(G)}$$

• The numerator denotes the amount of flow that must go through node u

Vitality

Example 2: Mobile (Peer to Peer) communication-network: Each node should be connected to each other node by as few intermediaries as possible. → quality measure: Wiener Index

$$q(G) = \sum_{v \in V} \sum_{w \in V} d(v, w)$$

Possible: write Wiener Index with the help of closeness centrality $c_c(v)$

$$q(G) = \sum_{v \in V} \frac{1}{c_c(v)}$$

Define centrality "closeness vitality" of graph element x as vitality:

$$c(x) = q(G) - q(G \setminus \{x\})$$

Vitality

• Example 2: Mobile (Peer to Peer) communication-network: Each node should be connected to each other node by as few intermediaries as possible. → quality measure: Wiener Index

$$q(G) = \sum_{v \in V} \sum_{w \in V} d(v, w)$$

 $^{\bullet}$ Possible: write Wiener Index with the help of closeness centrality $c_c(v)$

$$q(G) = \sum_{v \in V} \frac{1}{c_c(v)}$$

Define centrality "closeness vitality" of graph element x as vitality:

$$c(x) = q(G) - q(G \setminus \{x\})$$

• Example 2: Mobile (Peer to Peer) communication-network: Each node should be connected to each other node by as few intermediaries as possible. → quality measure: Wiener Index

$$q(G) = \sum_{v \in V} \sum_{w \in V} d(v, w)$$

 ullet Possible: write Wiener Index with the help of closeness centrality $c_c(v)$

$$q(G) = \sum_{v \in V} \frac{1}{c_c(v)}$$

Define centrality "closeness vitality" of graph element x as vitality:

$$c(x) = q(G) - q(G \setminus \{x\})$$

Stress Centrality as Vitality

Example

- Number of shortest paths: 54
- Number of shortest paths containing e: 8
- \bullet σ_{cd} =1 (length 3)

- Number of shortest paths: 64
 (18 of them have increased in length)
- \bullet σ_{cd} =4 (length 4)

• We had: stress centrality of v or e is equal to number of shortest paths through v or e

$$c_{stress}(v) = \sum_{a \in V; a \neq v} \sum_{b \in V; b \neq v} \sigma_{ab}(v) \qquad c_{stress}(e) = \sum_{a \in V} \sum_{b \in V} \sigma_{ab}(e)$$

ΝÌ

- Intuition: $c_{stress}^{\mathbb{R}}(v)$ seems to measure the number of shortest paths that would be lost if v wasn't avaliable any more
- $^{\bullet}$ Why can't we directly use $c_{\it stress}$ as a graph quality index to construct a vitality index ?
- ◆ Because actual number of shortest paths can INCREASE if e.g. edge is taken away

Stress Centrality as Vitality

Example

- Number of shortest paths: 54
- Number of shortest paths containing e: 8
- \bullet σ_{cd} =1 (length 3)

- Number of shortest paths: 64
 (18 of them have increased in length)
- σ_{cd} =4 (length 4)

$$c_{vitality}(v, G) = c_{stress}(v, G) - c_{stress}(v, G \setminus \{v\})$$

with

$$c_{stress}(v, G \setminus \{v\}) = \sum_{a \in V; a \neq v} \sum_{b \in V; b \neq v} \sigma_{ab} [d_G(a, b) = d_{G \setminus \{v\}}(a, b)]^{k}$$

(Iverson notation)

Critique on Betweenness Based Centralities

- major critique: Max-Flow betweenness centrality (suggested to counteract this drawback) may exhibit similar problems
- here: special Max-Flow betweenness centrality mfb:
 - -- limit edge capacity to one
 - -- mfb(i) := maximum possible flow through i over all possible solutions to the s-t-maximum flow problem, averaged over all s and t.

(b) In calculations of flow betweenness, vertices A and B in this configuration will get high scores while vertex C will not.

Source: [5]

Critique on Betweenness Based Centralities

- major critique: Max-Flow betweenness centrality (suggested to counteract this drawback) may exhibit similar problems
- here: special Max-Flow betweenness centrality mfb:
 - -- limit edge capacity to one
 - -- mfb(i) := maximum possible flow through i over all possible solutions to the s-t-maximum flow problem, averaged over all s and t.

(b) In calculations of flow betweenness, vertices A and B in this configuration will get high scores while vertex C will not.

Source: [5]

(1) (b) (2) (B) (Q) (...)

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

- flow of electric current in a resistor network; V_i = voltage (potential) at vertex i
- Current Flow betweenness cfb centrality : cfb(i) := amount of current that flows through i in this setup, averaged over all s and t.

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

• flow of electric current in a resistor network; V_i = voltage (potential) at vertex i

• Current Flow betweenness cfb centrality : cfb(i) := amount of current that flows through i in this setup, averaged over all s and t.

• Kirchhoffs point law (current conservation): total current flow in / out of node is zero:

$$\sum_{j} A_{ij}(v_i-v_j)=b_{is}-b_{it},$$
 if there is an edge between i and j , otherwise,
$$\delta_{ij}=\left\{\begin{array}{cc} 1 & \text{if there is an edge between } i \text{ and } j,\\ 0 & \text{otherwise.} \end{array}\right.$$
 one unit of current out

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

• Kirchhoffs point law (current conservation): total current flow in / out of node is zero:

$$A_{ij} = \left\{ \begin{array}{ll} 1 & \text{if there is an edge between } i \text{ and } j, \\ 0 & \text{otherwise,} \end{array} \right.$$
 one unit of current in
$$\delta_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{array} \right.$$

one unit of current out

• Kirchhoffs point law (current conservation): total current flow in / out of node is zero:

• Kirchhoffs point law (current conservation): total current flow in / out of node is zero:

if there is an edge between i and j, otherwise

if i = j, otherwise.

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

• Kirchhoffs point law (current conservation): total current flow in / out of node is zero:

• Kirchhoffs point law (current conservation): total current flow in / out of node is zero:

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

 $\sum_{j} A_{ij} = k_i$, the degree of vertex i

$$\sum_{j} A_{ij}(V_i - V_j) = \delta_{is} - \delta_{it} \qquad \underbrace{(\mathbf{D} - \mathbf{A})}_{\text{"Graph Laplacian"}} \mathbf{V} = \mathbf{s}$$

D is the diagonal matrix with elements $D_{ii} = k_i$

source vector
$$\mathbf{s}$$
 $s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

$$\sum_{j} A_{ij} = k_i$$
, the degree of vertex i .

$$\sum_{j} A_{ij} (V_i - V_j) = \delta_{is} - \delta_{it} \qquad (\mathbf{D} - \mathbf{A}) \cdot \mathbf{V} = \mathbf{s}$$
"Graph Laplacian"

D is the diagonal matrix with elements $D_{ii} = k_i$

source vector
$$\mathbf{s}$$
 $s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$

 $\sum_{i} A_{ij} = k_i$, the degree of vertex i.

$$\sum_{j} A_{ij}(V_i - V_j) = \delta_{is} - \delta_{it} \qquad \underbrace{(\mathbf{D} - \mathbf{A})}_{\text{"Graph Laplacian"}} \mathbf{V} = \mathbf{s}$$

D is the diagonal matrix with elements $D_{ii} = k_i$

source vector
$$\mathbf{s}$$
 $s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

 $\sum_{i} A_{ij} = k_i$, the degree of vertex i.

$$\sum_{j} A_{ij}(V_i - V_j) = \delta_{is} - \delta_{it} \qquad \qquad \underbrace{(\mathbf{D} - \mathbf{A})}_{\text{"Graph Laplacian"}} \mathbf{V} = \mathbf{s}_{\text{\mathbb{R}}}$$

D is the diagonal matrix with elements $D_{ii} = k_i$

source vector
$$\mathbf{s}$$
 $s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

 $\sum_{i} A_{ij} = k_i$, the degree of vertex i.

$$\sum_{j} A_{ij} (V_i - V_j) = \delta_{is} - \delta_{it} \qquad \underbrace{(\mathbf{D} - \mathbf{A})}_{\text{"Graph Laplacian"}} \mathbf{V} = \mathbf{s}$$

D is the diagonal matrix with elements $D_{ii} = k_i$

source vector
$$\mathbf{s}$$
 $s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

$$\underbrace{(\mathbf{D}-\mathbf{A})}\cdot\mathbf{V}=\mathbf{s}$$

Laplacian is not invertible, det = 0, because system of eq. is overdetermined \rightarrow set one $V_v=0$ and measure voltages relative to v. \rightarrow remove the v-th row and column (since $V_v=0$) \rightarrow now invertible

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$
 (matrix inversion: O(n³))

let us now add a vth row and column back into $(\mathbf{D}_v - \mathbf{A}_v)^{-1}$ with values all equal to zero.

The resulting matrix we will denote T.

$$\longrightarrow V_i^{(st)} = T_{is} - T_{it}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

$$\underbrace{(\mathbf{D}-\mathbf{A})}\cdot\mathbf{V}=\mathbf{s}$$

Laplacian is not invertible, det = 0, because system of eq. is overdetermined \rightarrow set one V_v =0 and measure voltages relative to v. \rightarrow remove the v-th row and column (since V_v =0) \rightarrow now invertible

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$
 (matrix inversion: O(n³))

let us now add a vth row and column back into $(\mathbf{D}_v - \mathbf{A}_v)^{-1}$ with values all equal to zero.

The resulting matrix we will denote T.

$$\longrightarrow V_i^{(st)} = T_{is} - T_{it}$$

$$(\mathbf{D} - \mathbf{A}) \cdot \mathbf{V} = \mathbf{s}$$

Laplacian is not invertible, det = 0, because system of eq. is overdetermined \rightarrow set one $V_v=0$ and measure voltages relative to v. \rightarrow remove the v-th row and column (since $V_v=0$) \rightarrow now invertible

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$
 (matrix inversion: O(n³))

let us now add a vth row and column back into $(\mathbf{D}_v - \mathbf{A}_v)^{-1}$ with values all equal to zero.

The resulting matrix we will denote T.

$$\longrightarrow V_i^{(st)} = T_{is} - T_{it}$$

$$\xrightarrow{} \text{current flow at node i:} \quad I_i^{(st)} = \tfrac{1}{2} \sum_j A_{ij} |V_i^{(st)} - V_j^{(st)}|$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

$$(\mathbf{D} - \mathbf{A}) \cdot \mathbf{V} = \mathbf{s}$$

Laplacian is not invertible, det = 0, because system of eq. is overdetermined \rightarrow set one $V_v=0$ and measure voltages relative to v. \rightarrow remove the v-th row and column (since $V_v=0$) \rightarrow now invertible

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$
 (matrix inversion: O(n³))

let us now add a vth row and column back into $(\mathbf{D}_v - \mathbf{A}_v)^{-1}$ with values all equal to zero.

The resulting matrix we will denote **T**.

$$\longrightarrow V_i^{(st)} = T_{is} - T_{it}$$

• Kirchhoffs point law (current conservation): total current flow in / out of node is zero:

$$\sum_{j} A_{ij} (V_i - V_j) = \delta_{is} - \delta_{it},$$
 one unit of current in
$$\delta_{ij} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.$$
 if there otherw
$$\delta_{ij} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.$$
 one unit of current out

if there is an edge between i and j,

if i = j, otherwise.

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

$\underbrace{(\mathbf{D} - \mathbf{A})}_{\cdot} \cdot \mathbf{V} = \mathbf{s}$

Laplacian is not invertible, det = 0, because system of eq. is overdetermined \rightarrow set one V_v=0 and measure voltages relative to v. \rightarrow remove the v-th row and column (since $V_v=0$) \rightarrow now invertible

$$V = (D_v - A_v)^{-1} \cdot s$$
 (matrix inversion: O(n³))

let us now add a vth row and column back into $(\mathbf{D}_v - \mathbf{A}_v)^{-1}$ with values all equal to zero.

The resulting matrix we will denote **T**.

$$\longrightarrow V_i^{(st)} = T_{is} - T_{it}$$

Laplacian is not invertible, det = 0, because system of eq. is overdetermined \rightarrow set one $V_v=0$ and measure voltages relative to v. \rightarrow remove the v-th row and column (since $V_v=0$) \rightarrow now invertible

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$
 (matrix inversion: O(n³))

let us now add a vth row and column back into $(\mathbf{D}_v - \mathbf{A}_v)^{-1}$ with values all equal to zero.

The resulting matrix we will denote **T**.

$$\longrightarrow V_i^{(st)} \stackrel{\triangleright}{=} T_{is} - T_{it}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

current flow at node i:

$$I_i^{(st)} = \frac{1}{2} \sum_j A_{ij} |V_i^{(st)} - V_j^{(st)}|$$

= $\frac{1}{2} \sum_j A_{ij} |T_{is} - T_{it} - T_{js} + T_{jt}|$, for $i \neq s, t$.

unit current flow at nodes s and t:

$$I_s^{(st)} = 1, \qquad I_t^{(st)} = 1.$$

cfb(i) (denoted as b_i) is then:

$$b_i = \frac{\sum_{s < t} I_i^{(st)}}{\frac{1}{2} n (n-1)}. \tag{takes O(m n²) for all i)} \rightarrow \text{(plus matrix inversion:)}$$

$$O((m+n) n²) \text{ for everything}$$

current flow at node i:

$$I_i^{(st)} = \frac{1}{2} \sum_j A_{ij} |V_i^{(st)} - V_j^{(st)}|$$

$$= \frac{1}{2} \sum_j A_{ij} |T_{is} - T_{it} - T_{js} + T_{jt}|, \quad \text{for } i \neq s, t.$$

unit current flow at nodes s and t:

$$I_s^{(st)} = 1, \qquad I_t^{(st)} = 1.$$

cfb(i) (denoted as b_i) is then:

$$b_i = \frac{\sum_{s < t} I_i^{(st)}}{\frac{1}{2} n (n-1)}. \tag{takes O(m n²) for all i)} \rightarrow \text{(plus matrix inversion:)} \\ \text{O((m+n) n²) for everything}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

current flow at node i:

$$I_i^{(st)} = \frac{1}{2} \sum_j A_{ij} |V_i^{(st)} - V_j^{(st)}|$$

= $\frac{1}{2} \sum_j A_{ij} |T_{is} - T_{it} - T_{js} + T_{jt}|$, for $i \neq s, t$.

unit current flow at nodes s and t:

$$I_s^{(st)} = 1, \qquad I_t^{(st)} = 1.$$

cfb(i) (denoted as b_i) is then:

$$b_i = \frac{\sum_{s < t} I_i^{(st)}}{\frac{1}{2} n (n-1)}. \qquad \qquad \text{(takes O(m n²) for all i)} \rightarrow \\ \text{(plus matrix inversion:)} \\ \text{O((m+n)} \, \underset{\mathbb{R}}{\mathbb{N}^2} \text{) for everything}$$

current flow at node it

$$I_i^{(st)} = \frac{1}{2} \sum_j A_{ij} |V_i^{(st)} - V_j^{(st)}|$$

= $\frac{1}{2} \sum_j A_{ij} |T_{is} - T_{it} - T_{js} + T_{jt}|$, for $i \neq s, t$.

unit current flow at nodes s and t:

$$I_s^{(st)} = 1, I_t^{(st)} = 1.$$

cfb(i) (denoted as b_i) is then:

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

- cfb == random walk betweenness centrality (rwb):
- rwb(i): move around "messages": start (absorbing) random walk at s. end at t:

rwb(i):= net number of times that a message passes through i on its journey (averaged over a large number of trials and averaged over s, t)

("net" number of times: "cancel back and fourth passes")

if in i, probability that in next step j:

$$M_{ij} = \frac{A_{ij}}{k_j}, \quad \text{for } j \neq t,$$

$$\mathbf{M} = \mathbf{A} \cdot \mathbf{D}^{-1}$$
 with $D = \operatorname{diag}(k_i)$
$$D_{ii} = k_i$$

