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Exercise Sheet 5 Agenda for Today
" Prepare mid-term presentation = Localization
= Proposed structure: 3 slides = Visual place recognition
1. Remind people who you are and what you are = Scan matching and Iterative Closest Point
doing (can be same slide as last time) = Mapping with known poses (3D reconstruction)
2. Your work/achievements so far (video is a plus) * Occupancy grids
3. Your plans for the next two weeks = Octtrees
* Hand in slides before July 3, 10am * Signed distance field

= Meshing
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Remember: Loop Closures

= Use loop-closures to minimize the drift /
minimize the error over all constraints

Loop Closures

How can we detect loop closures efficiently?

2. Use motion model and covariance to limit
search radius (metric approach)

Loop Closures

How can we detect loop closures efficiently?
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Loop Closures

How can we detect loop closures efficiently?

3. Appearance-based place recognition (using
bag of words)
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. Appearance-based Place Recognition

Appearance can help to recover the pose
estimate where metric approaches might fail
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Object/Scene Recognition

* Analogy to documents: The content can be
inferred from the frequency of visual words

object
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Analogy to Document Retrieval

Of all the sensory impressions proceeding to the
brain, the visual experiences are the dominant
ones. Our perception of the world around us is
wc_that reach

sensory, brain,
visual, perception,

eye, cell, optical
perceptid nerve, image
Hubel, Wiesel

various cell lay®

and Wiesel have be
the message about the image fall
retina undergoes a step-wise anal
system of nerve cells stored in column
system each cell has its specific function
responsible for a specific detail in the patte!
the retinal image.
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China is forecasting a trade surplus of $90bn
(E51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surp s

China, trade,
surplus, commerce,
exports, imports, US,
yuan, bank, domestic,
foreign, increase,
trade, value

Beijing has made it clear that it will takd
and tread carefully before allowing the Y
rise furtherinvalue.
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Bag of Visual Words

= Visual words = (independent) features

face
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features
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Bag of Visual Words . Bag of Visual Words

» Visual words = (independent) features = Visual words = (independent) features
= Construct a dictionary of representative words = Construct a dictionary of representative words

= Represent the image based on a histogram of
word occurrences (bag)

dictionary of visual words (codebook) Each detected

feature is assigned
to the closest
entryin the
codebook

o p Schal )
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Overview

= feature detection
/m @O and extraction

N\ LS (e.g, SIFT, ..)

N " ™ -—-
ma_ AT RE T o
< 1B Paml 1mE Y
s arar e codewords dictionary
EdE=U_ Ak S="la-M
FLo=RLS b aes
RN I8 FEZIE

|

descriptor vectors
(e.g., SIFT, SURF, ...)

image representation
(hlstogram of word
occurrences)
example patch
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Learning the Dictionary
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Example Image Representation

* Build the histogram by assigning each detected
feature to the closest entry in the codebook

frequency

PTLONENRLS B

codewords
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Learning the Visual Vocabulary

Example Image Representation

= Build the histogram by assigning each detected
feature to the closest entry in the codebook

frequency

PLOENRLS =

codewords
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Object/Scene Recognition Object/Scene Recognition

N
* Compare histogram of new scene with those of = Compare histogram of new scene with those of
known scenes, e.g., using known scenes, e.g., using
= simple histogram intersection = simple histogram intersection
score(p,q) = ) min(p;, ;) score(p,q) = ) min(p;, ;)
" naive Bayes " naive Bayes
= more advanced statistical methods ® more advanced statistical methods
10 10
M Parking lot W Parking lot
5 | Highway 5 W Highway
m? m?
0 0
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Example: FAB-MAP Example: FAB-MAP
[Cummins and Newman, 2008] [Cummins and Newman, 2008]
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Example: FAB-MAP

[Cummins and Newman, 2008]
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Summary: Bag of Words

[Fei-Fei and Perona, 2005; Nister and Stewenius, 2006]

* Compact representation of content
Highly efficient and scalable
Requires training of a dictionary

Insensitive to viewpoint changes/image

deformations (inherited from feature
descriptor)

L
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Timing Performance

= |[nference: 25 ms for 100k locations
= SURF detection + quantization: 483 ms

& 5] % -]

Time (ms)

=

>3 4 5 & 7 .6 @ w
Number of Locations

Visual Navigation for Flying Robots 23 Dr. Jiirgen Sturm, Computer Vision Group, TUM

Laser-based Motion Estimation

= So far, we looked at motion estimation (and
place recognition) from visual sensors

= Today, we cover motion estimation from range
sensors

= Laser scanner (laser range finder, ultrasound)
= Depth cameras (time-of-flight, Kinect ...)

Visual Navigation for Flying Robots 25 Dr

. Jurgen Sturm, Computer Vision Group, TUM
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Laser Scanner Laser-based Motion Estimation

= Measures angles and distances to closest obstacles How can we best align two laser scans?
z=(01,2,...,0,, 2,) € R¥
» Alternative representation: 2D point set (cloud)

= Probabilistic sensor model p(z | x)

measured distance z

s plalz) v m
7 o
> &
Iy By
Exhaustive Search Example: Exhaustive Search (oison, 9]
= Convolve first scan with sensor model = Multi-resolution correlative scan matching
S . = Real-time by using GPU
Loob } f - 4| " Remember: SE(2) has 3 DOFs
W~y v =y, J .

Laser Scan Matching - C

= Sweep second scan over likelihood map,
compute correlation and select best pose




Example: Exhaustive Search (oison, 09

* Multi-resolution correlative scan matching
= Real-time by using GPU
= Remember: SE(2) has 3 DOFs

Does Exhaustive Search
Generalize To 3D As Well?

LN
Example: Exhaustive Search (oison, 09)

= Multi-resolution correlative scan matching
= Real-time by using GPU
= Remember: SE(2) has 3 DOFs

L1y

Iterative Closest Point (ICP)

= Given: Two corresponding point sets (clouds)

P={p1.....Pn}
Q=1{di,...,q,}

= Wanted: Translation t and rotation R that
minimize the sum of the squared error

n

1
E(R,t) = 52 Ipi — Ra; — t|f*
i=1

where p; and q; are corresponding points



Known Correspondences

Note: If the correct correspondences are known,
both rotation and translation can be calculatedin
closed form.

- -

Known Correspondences

* Decompose the matrix
W=> (pi—p)ai—q =USV'
using singular value decomposition (SVD)

* Theorem
If rank W = 3, the optimal solution of E(R,t)
is unique and given by
R=UV"'
. t=p— Rq

(for proof, see http://hss.ulb.uni-bonn.de/2006/0912/0912. pdf, p.34/35)

ts
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Known Correspondences

= |dea: The center of mass of both point sets has
to match

ﬁ_%zpz‘ (_]—%qut

= Subtract the corresponding center of mass
from every point

= Afterwards, the point sets are zero-centered,
i.e., we only need to recover the rotation...

Unknown Correspondences

= |f the correct correspondences are not known,
it is generally impossible to determine the
optimal transformation in one step

= N\
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= Algorithm: Iterate until convergence

ICP Algorithm

[Besl & McKay, 92]

® Find correspondences

= Solve for R,t

= Converges if starting position is “close enough”

/\/:—D/\/-

=&

e

Example: ICP

CIEN

Example: ICP

[N
ICP Variants

Many variants on all stages of ICP have been
proposed:

= Selecting and weighting source points
® Finding corresponding points

Rejecting certain (outlier) correspondences

Choosing an error metric

Minimization
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Performance Criteria

= Various aspects of performance
= Speed
= Stability (local minima)
= Tolerance w.r.t. noise and/or outliers

= Basin of convergence (maximum initial
misalignment)

" Choice depends on data and application

m&J
Spatially Uniform Sampling

= Density of points usually depends on the
distance to the sensor = no uniform
distribution

= Canleadto a biasin ICP

@&
Selecting Source Points

Use all points

Uniform sub-sampling

Random sampling

Feature-based sampling

Normal-space sampling

= Ensure that samples have normals distributed as
uniformly as possible

(=Y
Feature-based Sampling

Detect interest points (same as with images)
= Decrease the number of correspondences
= |ncrease efficiency and accuracy

= Requires pre-processing

L
3D Scan (~200.000 Points) Extracted Features (~5.000 Points)
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Normal-Space Sampling

Uniform sampling Normal-space sampling

Dr. Jirgen Sturm, Computer Vision Group, IV

Selection and Weighting

Selection is a form of (binary) weighting

Instead of re-sampling one can also use
weighting

Weighting strategy depends on the data
Pre-processing / run-time trade-off
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Example: Normal-Space Sampling

Normal-space sampling can help on mostly-
smooth areas with sparse features

Random s&npling Normal-space sampling

Visual Navigation for Flying Robots 45

Finding Correspondences

Has greatest effect on convergence and speed
= Closest point

Normal shooting

Closest compatible point

Projection

Speed-up using kd-trees (or oct-trees)

Dr. Jiirgen Sturm, Computer Vision Group, TUN



Closest Point Matching Normal Shooting

" Find closest pointin the other point set = Project along normal, intersect other mesh

= Distance threshold /\/-

[\f

* Closest-point matching generally stable, but = Slightly better than closest point for smooth

slow and requires pre-processing meshes, worse for noisy or complex meshes
Closest Compatible Point Speeding Up Correspondence Search

= Canimprove effectiveness of both the previous Finding closest point is most expensive stage of
variants by only matching to compatible points the ICP algorithm

= Compatibility based on normals, colors, ... = Build index for one point set (kd-tree)

" |n the limit, degenerates to feature matching = Use simpleralgorithm (e.g., projection-based

matching)



Projection-based Matching

= Slightly worse performance per iteration

= Each iteration is one to two orders of
magnitude faster than closest-point

* Requires point-to-plane error metric

Error Metrics

® Point-to-point

» Point-to-plane lets flat regions slide along each
other

~
~

~
~
~

point-to-plane S
distance ~ normal
~
~
~

* Generalized ICP: Assign individual covariance to
each data point [segal, 2009]

Visual Navigation for Flying Robots

Projection-based Matching

= Slightly worse performance per iteration

= Each iteration is one to two orders of
magnitude faster than closest-point

= Requires point-to-plane error metric

Minimization

= Only point-to-point metric has closed form
solution(s)

= Other error metrics require non-linear
minimization methods

= Which non-linear minimization methods do you
remember?

= Which robust error metrics do you remember?
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Robust Error Metrics Example: Real-Time ICP on Range Images

[Rusinkiewicz and Levoy, 2001]

2
P) = Real-time scan alignment
(@

)

|

20+ Pt 1‘1111(-(

= Range images from structure light system

Ohuber\ € . .
f ( (projector and camera, temporal coding)

e

LN @&
ICP: Summary Agenda for Today
" |CPis a powerful algorithm for calculating the = Localization
displacement between point clouds * Visual place recognition
* The overall speed depends most on the choice = Scan matching and Iterative Closest Point
of matching algorithm = Mapping with known poses (3D
= |ICPis (in general) only locally optimal = can reconstruction)
get stuck in local minima * Occupancy grids
= Qcttrees

= Signed distance field
N = Meshing b



Occupancy Grid

Idea:
= Representthe map m using a grid

* Each cell is either free or occupied

m = (mq,...,m,) € {empty, occ}"

* Robot maintains a belief Bel(m) on map state

Goal: Estimate the belief from sensor
observations

Bel(m) = P(m [zi,..., Z)
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Mapping
" Goal: Estimate
Bel(m) = P(m | z1,...,2,)

* How can this be computed?

Occupancy Grid - Assumptions

Map is static

Cells have binary state (empty or occupied)

All cells are independent of each other

As a result, each cell m,; can be estimated
independently from the sensor observations

Will also drop index i (for the moment)

e

Binary Bayes Filter

= Prior probability that cell is occupied P(m)
(often 0.5)

= Inverse sensor model P(m | z;) is specific to
the sensor used for mapping

= The log-odds representation can be used to
increase speed and numerical stability

p(z)
1 —p(x)

= log



Binary Bayes Filter

* Prior probability that cell is occupied P(m)
(often 0.5)

* Inverse sensor model P(m | z) is specific to
the sensor used for mapping

" The log-odds representation can be used to
increase speed and numerical stability

T) p(x)
r 1 —p(x)

S
—_

= log

Clamping Update Policy

Often, the world is not “fully” static

Consider an appearing/disappearing obstacle

To change the state of a cell, the filter needs as
many positive (negative) observations

Idea: Clamp the beliefs to min/maxvalues

L'(m | z14) = max(min(L(m | 21.4), lnax)s lmin)

Binary Bayes Filter using Log-Odds

" |In each time step, compute

inverse
previous belief sensor model map prior

Lm | z14) =L(m | z14-1) + L(m | z) + L(m)

= When needed, compute current belief as

1

Bely(m) =1 —
ely(m) 1 +expL(m]| z14)

e

Sensor Model

= For the Bayes filter, we need the inverse sensor
model

p(m | z)

» Let’s consider an ultrasound sensor
= Located at (0,0)
= Measures distance of 2.5m

= How does the inverse sensor model look like?
Iy



Typical Sensor Model for Ultrasound

* Combination of a linear function (in x-
direction) and a Gaussian (in y-direction)

= Question: What about a laser scanner?
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Resulting Map

o4

Note: The maximum likelihood map is obtained
by clipping the occupancy grid map at a
threshold of 0.5 N
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Example: Updating the Occupancy Grid

y
y
y
y
N -
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+
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Memory Consumption

= Consider we want to map a building with
40x40m at a resolution of 0.05cm

= How much memory do we need?

v
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Map Representation by Octtrees

Tree-based data structure

Recursive subdivision of space into octants

Volumes can be allocated as needed

Multi-resolution
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Example: OctoMap

[Wurm et al., 2011]

" Freiburg computer science campus
292 x 167 x 28 m3, 0.2m resolution, 2mb on disk

ks
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Example: OctoMap

[Wurm et al., 2011]

= Freiburg, building 79
44 x 18 x 3 m3, 0.05m resolution, 0.7mb on disk
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Signed Distance Field (SDF)

[Curless and Levoy, 1996]

= |dea: Instead of representing the cell
occupancy, represent the distance of each cell
to the surface

= Occupancy grid maps: explicit representation

' z=1.8
free space occupied
> X

= SDF: implicit representation

l z=1.8

negative = 13 | 03| 07 17 .poe.;ltlve=.
L outside obj. inside obj.
> X
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Signed Distance Field (SDF)

Weighting Function
[Curless and Levoy, 1996]
Algorithm: = Weight each observation according to its
1. Estimate the signed distance field confidence

2. Extract the surface using interpolation aht w(a) signed distance
. . weight w(x .
(surface is located at zero-crossing) (=confidence) to surface d(z)

=g ZAN

negative= positive =
outside obj. 13 (03107 | 17 inside obj. easured distance x
depth z
M R = Weight can additionally be influenced by other
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modalities (reflectance values, ...)
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Data Fusion Two Nice Properties
* Each voxel cell = in the SDF stores two values = Noise cancels out over multiple measurements
= Weighted sum of signed distances D;(x) “ >x X

= Sum of all weights W;(x)

= When new range image arrives, update every

voxel cell according to | o
= Zero-crossing can be extracted at sub-voxel
Dyiy1(x) = Dy(x) + w1 (X)dpy1(x) accuracy (least squares estimate)
Wi (X) N VVt(X) T Wt (X) Z D, (I)T

1D Example: "= &=
L

S Wi(a)a
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SDF Example

A cross section through a 3D signed distance
function of a real scene

A
y
F>p
X
Sulface with cross-section SDF
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SDF Fusion

ks
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brightness encodes D, (x)/W;(x)

SDF Fusion
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Visualizing Signed Distance Fields

Common approaches to iso surface extraction:

1. Ray casting (GPU, fast)
For each camera pixel, shoot a ray and search
for zero crossing

2. Poligonization (CPU, slow)

E.g., using the marching cubes algorithm
Advantage: outputs triangle mesh

e
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Ray Casting

" For each camera pixel, shoot a ray and search
for the first zero crossing in the SDF

= Value in the SDF can be used to skip along

when far from surface .
pal

Marching Cubes

First in 2D, marching squares:

= Evaluate each cell separately

= Check which edges are inside/outside

* Generate triangles according to lookup table
* Locate vertices using least squares

i ngmgamg
@Eam

Ca&S Case9 Case 10 Casell Case 12 Case 13 Case 14 Casel5
85
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Ray Casting

= |nterpolation reduces artifacts

= Close to surface, gradient represents the
surface normal

/.

Marching Cubes

154
BESSN | |




KinectFusion KinectFusion

[Newcombe et al., 2011] [Newcombe et al., 2011]
" Projective ICP with point-to-plane metric = Projective ICP with point-to-plane metric
* Truncated signed distance function (TSDF) = Truncated signed distance function (TSDF)
= Ray Casting = Ray Casting

Raw normal m*a’g‘(l{rpﬁﬂ’ itinest O3 (not usae

- .

- ; 1

e - d A

ap mcnnslmdm 3d reconstruction

5 5 b S E "k ki ceun TN 5 s— (o shaded) s <
KinectFusion KinectFusion
[Newcombe et al., 2011] [Newcombe et al., 2011]
" Projective ICP with point-to-plane metric = Projective ICP with point-to-plane metric
* Truncated signed distance function (TSDF) = Truncated signed distance function (TSDF)
= Ray Casting = Ray Casting
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KinectFusion Lessons Learned Today

[Newcombe et al., 2011]

" Projective ICP with point-to-plane metric How to quickly recognize previously seen

" Truncated signed distance function (TSDF) places
How to align point clouds

= Ray Casting

Masked Depth + Normals \ ? 'Fia?é‘év
TR Ll WAL ﬂ How to reconstruct triangle meshes at sub-
ey 4 B voxel accuracy

How to estimate occupancy maps




