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Organization

= Next:week: Three scientific guest talks

= Recent research results from our group
(2011/12)

Conference Paper

Journal Article

Conference Paper

Conference Paper m
Journal Article

Conference Paper
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ICRA, IROS, CVPR, T-RO, AURQ,
ICCV, NIPS, ... RAS, PAMI,




Guest Talks Perception

" An Eyaluation of the RGB-D SLAM System (F. = Perception and models are strongly linked
Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers,

W. Burgard), In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2012.

» Real-Time Visual Odometry from Dense RGB-D
Images (F. Steinbruecker, J. Sturm, D. Cremers), In
Workshop on Live Dense Reconstruction with
Moving Cameras at the Intl. Conf. on Computer
Vision (ICCV), 2011.

* Camera-Based Navigation of a Low-Cost
Quadrocopter (J. Engel, J. Sturm, D. Cremers),
Submitted to International Conference on Robotics
and Systems (IROS), under review.
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Perception

* Perception and models are strongly linked
= Example: Human Perception

Edward H. Adelson

more on http://michaelbach.de/ot/index.html
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State Estimation

Canmot observe world state directly

Need to estimate the world state

Robot maintains belief about world state

Update belief according to observations and
actions using models

Sensor observations + sensor model

Executed actions + action/motion model

Visual Navigation for Flying Robots 8 Dr. Jurgen Sturm, Computer Vision Group, TUM

Models and State Estimation

Sensor Belief/ Motion
Model State Estimate Model

e

Perception Plan Execution

Sensing

State Estimation

What parts of the world state are (most) relevant
for a flying robot?

Visual Navigation for Flying Robots 9 Dr. Jiirgen Sturm, Computer Vision Group, TUM

(Deterministic) Sensor Model

= Robet perceives the environmentthrough its

Sensors
2= h(x)

0 0
sensor world

reading state

observation
function

= Goal: Infer the state of the world from sensor
readings

r=h"1(z)

Visual Navigation for Flying Robots 12 Dr. Jirgen Sturm, Computer Vision Group, TUM



(Deterministic) Motion Model

= Robet executes an action u
(e.g., move forward at 1m/s)

» Update belief state according to motion model

transition executed
function action

b

7' = g(,u)
t )
current state previous

state

Probabilistic Robotics

= Sensor observations are noisy, partial,
potentially missing (why?)

= All models are partially wrong and incomplete
(why?)

= Usually we have prior knowledge (why?)

Probabilistic Robotics

= Sensor observations are noisy, partial,
potentially missing (why?)

= All models are partially wrong and incomplete
(why?)

= Usually we have prior knowledge (why?)

Probabilistic Robotics

= Probabilistic sensor and motion models
plz]z)  pla' |z u)

= |[ntegrate information from multiple sensors
(multi-modal)

P(CU | Zvision “ultrasound s ZIMU)
= |[ntegrate information over time (filtering)
p(‘E | D1y 22y e e 7’Zf)

plx | ur, 21,00 uy, 2t)



Agenda for Today

= Motivation v/

Bayes Filter

Kalman Filter

Visual Navigation for Flying Robots

A Closer Look at Axiom 3

PFAUB) = P(A) + P(B) — P(AN B)

Bayesian Probability Theory

Normal Distribution

Dr. Jirgen Sturm, Computer Vision Group, TUN

A ANnB B

Visual Navigation for Flying Robots

Dr. Jirgen Sturm, Computer Vision Group, TUM

The Axioms of Probability Theory

Notation: P(A) refers to the probability that
proposition A holds

1. 0<P(A)<1
2. P(Q)=1 P®) =0

3. P(AUB)=P(A)+P(B)—-P(ANB)

Discrete Random Variables

= X denotes a random variable

= X can take on a countable number of values
in{xy, 29, ...2,}

" P(X = ;) is the probability that the random
variable X takes on value z;

= P(.)is called the probability mass function

" Example: P(Room) =< 0.7,0.2,0.08,0.02 >
Room € {office, corridor, lab, kitchen}

Visual Navigation for Flying Robots 19 Dr. Jirgen Sturm, Computer Vision Group, TUM



A Closer Look at Axiom 3

PFAUB) = P(A) + P(B) — P(AN B)

A ANnB B

Visual Navigation for Flying Robots 18 Dr. Jurgen Sturm, Computer Vision Group, TUM

Proper Distributions Sum To One

Z P(x) =1

" Discrete case
= Continuous case

/p(.L)dL =1

Visual Navigation for Flying Robots 21 Dr. Jirgen Sturm, Computer Vision Group, TUM

Continuous Random Variables

= X takes on continuous values

= p(X =x)or p(x)is called the probability
density function (PDF)

b
P(z € [a,b]) = / p(z)dx

= Example

Joint and Conditional Probabilities

| P(X%: rand Y :y) = P(‘Ly)

= |f X and Yare independent then
P(z,y) = P(x)P(y)

= P(x|y) is the probability of x giveny
P(z | y)P(y) = P(z,y)
= |f X and Yare independent then
P(x |y) = P(x)

Visual Navigation for Flying Robots 22 Dr. Jirgen Sturm, Computer Vision Group, TUM



Conditional Independence

= Definition of conditional independence

P,y |z)=Plx|2)P(y| z)

= Equivalentto P(z |z
Py | =

" Note: this does not necessarily mean that

Visual Navigation for Flying Robots

Example: Marginalization

)
)

= P(z | y,2)

Pz |z, z)

P(x,y) = P(x)P(y)

23
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Marginalization

" Discrete case

= Continuous case

Visual Navigation for Flying Robots

P(z) =) P(z,y)

p(z) = f p(z, y)dy

24 Dr. Jiirgen Sturm, Computer Vision Group, TUN

Law of Total Probability

" Discrete case

= Continuous case

Visual Navigation for Flying Robots

P(z) =) P(z,y)
=> Pz |y)P(y)

p(z) = / p(,y)dy
_ / p(x | y)p(y)dy



[IEY
Expected Value of a Random Variable

E[X] =) x;P(z;)

i

Discrete case

Continuouscase  E[X] = /:rP(X = z)dx

The expected value is the weighted average of
all values a random variable can take on.

Expectation is a linear operator
ElaX +b] = aE[X]+ b
sual Navigation for Flying Robots 27 Dr. Jurgen Sturm, Computer Vision Group, TUM

The State Estimation Problem

We want to estimate the world state =
= From sensor measurements z
= and controls (or odometry readings) «

We need to model the relationship between
these random variables, i.e.,

plx | 2) p(a' |z, u)

Covariance of a Random Variable

= Measures the squared expected deviation from
the mean

[

Cov[X] = E[X — E[X]]* = E[X?] - E[X]

Causal vs. Diagnostic Reasoning

P(z ! z)is diagnostic

P(z | x)is causal

Often causal knowledge is easier to obtain

Bayes rule allows us to use causal knowledge:

observation likelihood prioron world state

b
P(z|z) = “}'}'2) @)
1

prior on sensor observations

sual Navigation for Flying Robots 30 Dr. Jirgen Sturm, Computer Vision Group, V



Bayes Formula Causal vs. Diagnostic Reasoning

P(dz) = P(z | 2)P(z) = P(z | ) P(x) P(x | 2)is diagnostic

P(z | z)is causal

=
= Often causal knowledge is easier to obtain
= Bayes rule allows us to use causal knowledge:
P(z|z) = P(z | z)P(z)  likelihood - prior Y | &
- P(Z) — evidence observatlonllllellhood ploron world state
_ Pz | 2)P(x)
)
prior on sensor observations
Bayes Formula Normalization
P(22) = P(z | 2)P(2) = P(z | 2)P(z) = Direct computation of P(z) can be difficult
= |dea: Compute improper distribution,
= .
normalize afterwards
= Step 1: L(z | z)=P(z | x)P(x)
P(z|z) = P(z | z)P(z)  likelihood - prior
N P(z) - evidence

= Step 2: P(z)=) P(z|z)P(x)=> L(x|z)

(Law of total
probability)

= Step 3: Pz |z)=L(z|2)/P(z)

Visual Navigation for Flying Robots 31 Dr. Jirgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 32 Dr. Jirgen Sturm, Computer Vision Group, TUM



Normalization

* Direct computation of P(z) can be difficult

" |dea: Compute improper distribution,
normalize afterwards

= Step 1: L(x|z)=P(z|x)P(x)

= Step 2: P(z)=> P(z|x)P(x)=> L(x|=2)
orabatiity ! !

= Step 3: P(z|z)=L(x | 2)/P(2)

Example: Sensor Measurement

* Quadrocopter seeks the landing zone
* Landing zone is marked with many bright lamps

* Quadrocopter has a brightness sensor

Bayes Rule with Background Knowledge

Py |z z)P(x | 2)
P(y | 2)

P(r |y, z) =

Visual Navigation for Flying Robots

Example: Sensor Measurement

= Binary sensor Z € {bright, ~dark}

Binary world state X € {home, —home}

Sensor model P(Z = bright | X = home) = 0.6
P(Z = bright | X = —home) = 0.3

Prior on world state P(X = home) = 0.5

Assume: Robot observes light, i.e., Z = bright
What is the probability P(X = home | Z = bright)
that the robot is above the landing zone?

Visual Navigation for Flying Robots Dr. Jirgen Sturm, Computer Vision Group, TUM



Example: Sensor Measurement

= Sensor model P(Z = bright | X = home) = 0.6
P(Z = bright | X = —home) = 0.3

= Prior on world state P(X = home) = 0.5

* Probability after observation (using Bayes)

P(X = home | Z = noise)
P(bright | home)P(home)

P(bright | home)P(home) + P(bright | =home)P(—home)
0.6-0.5 0.3 0.67

T 06-05+03-05 03+0.15

Visual Navigation for Flying Robots 36 Dr. Jurgen Sturm, Computer Vision Group, TUM

Recursive Bayesian Updates

N P(zp | x, 21, oy zn-1) P2 | 21,000y 20m1)

Plx|z,...,2,) =

Visual Navigation for Flying Robots 40 Dr. Jirgen Sturm, Computer Vision Group, TUM

Combining Evidence

= Suppose our robot obtains another
observation z; (either from the same or a
different sensor)

= How can we integrate this new information?

= More generally, how can we estimate
plx | z1,29,...)?

Visual Navigation for Flying Robots 38 Dr. Jiirgen Sturm, Computer Vision Group, TUM

Example: Second Measurement

= Sensor model P(Z, = marker | X = home) = 0.8
P(Z, = marker | X = —home) = 0.1

= Previous estimate P(X = home | Z; = bright) = 0.67

= Assume robot does not observe marker

.

What is the probability of being home?

P(X = home | Z; = bright, Z; = —marker)
P(—marker | home) P(home | bright)
- P(—marker | home)P(home | bright) + P(—-marker | —home) P(—home | bright)
_ 0.2-0.67 _ 031
0.2-0.674+0.9-0.33

Visual Navigation for Flying Robots 43 Dr. Jirgen Sturm, Computer Vision Group, TUM



Actions (Motions) Typical Actions
» Often the world is dynamic since = Quadrocopter accelerates by changing the
= actions carried out by the robot... speed of its motors
= actions carried out by other agents... = Position also changes when quadrocopter does
* or just time passing by... “nothing” (and drifts..)

...change the world

= Actions are never carried out with absolute
* How can we incorporate actions? certainty

" |n contrast to measurements, actions generally
increase the uncertainty of the state estimate

sual Navigation for Flying Robots 45 Dr. Jurgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 46 Dr. Jiirgen Sturm, Computer Vision Group, V

Action Models Example: Take-Off
* To incorporate the outcome of an action uinto = Actien: u € {takeoff }
the current state estimate (“belief”), we use = World state:

x € {ground, air}

099\

o' | u,) e

the conditional pdf

= This term specifies the probability that 0.9 0.01
executing the action u in state x will lead to
state x’ ground



Integrating the Outcome of Actions

" Discrete case
2| u) ZP (x| u,x)P(x)

= Continuous case

p(x’ | u) = /p(T | u, z)p(x)de

Markov Chain

= A Markov chain is a stochastic process where,
given the present state, the past and the future
states are independent

ALt—1 ALi+1 >

ol

Example: Take-Off

" Prior.belief on robot state: P(x = ground) = 1.0
(robot is located on the ground)

= Robot executes “take-off” action
= What is the robot’s belief after one time step?
P(z' = ground) = Z P(2" = ground | u, ) P(z)

=P(z' = ground | u, x = ground) P(x = ground)

+P(2' = ground | u, z = air) P(x = air)
=0.9-1.0+0.99-0.0=0.9

- Quest|on What is the probability at t=27

gation fo g Robots 50 Dr. Jiirgen Sturm, Computer Vision Group, V

Markov Assumption

= Observations depend only on current state
P(Zr | CUo:t,Z'l:rq,U-l:t) = —P(Zt | l‘r)

= Current state depends only on previous state
and current action

P(x | TO:t—1, 21t Un:t) =
= Underlying assumptions

= Static world

P(ﬂft | xtf'l:ut)

* |ndependent noise
= Perfect model, no approximation errors

sual Navigation for Flying Robots 52 Dr. Jirgen Sturm, Computer Vision Group, V



Bayes Filter Bayes Filter
= Given:
N , , For each time step, do
= Stream of observations zand actions u: 1 Aoblv motion model
df — (u'lvz'la"':ufazt)-r . PPy
= Sensor model P(z | x) Bel(z;) = Zp(l-, | 41, u)Bel(z_1)
= Action model P(z' | z,u) i1
= Prior probability of the system state P(x) 2. Apply sensor model
" Wanted: Bel(z;) = nP(z | 2;)Bel(xy)
= Estimate of the state z of the dynamic system
= Posterior of the state is also called belief Note: Bayes filters also work on continuous state
Bel(a) = Play | un, 21, - g, 1) spaces (replace sum by integral)
Example: Localization Example: Localization
" Discretestate x € {1,2,...,w} x {1,2,...,h} " Actien u € {north, east, south, west }
= Belief distribution can be represented as a grid = Robot can move one cell in each time step

* This is also called a histogram filter Actions are not perfectly executed

Example: move east

B Ty = :H- U = east = .H:

60% success rate, 10% to stay/move too far/
move one up/move one down

rgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 57 Dr. Jirgen Sturm, Computer Vision Group, V



Example: Localization Example: Localization
= Observation > € {marker, -marker} " t=0
" One (special) location has a marker = Prior distribution (initial belief)
* Markeris sometimes also detected in = Assume we know the initial location (if not, we

neighboring cells could initialize with a uniform prior)
H W[ 5y >

Example: Localization Example: Localization
= t=1, u=east, z=no-marker = t=2, u=east, z=marker
= Bayes filter step 1: Apply motion model = Bayes filter step 1: Apply observation model

| > K 5 >

Visual Navigation for Flying Robots 61 Dr. Jirgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 64 Dr. Jirgen Sturm, Computer Vision Group, TUM



Bayes Filter - Summary

* Markovassumption allows efficient recursive
Bayesian updates of the belief distribution

= Useful tool for estimating the state of a dynamic

system

= Bayes filter is the basis of many other filters

Visua

= Kalman filter

= Particle filter

* Hidden Markov models

= Dynamic Bayesian networks

= Partially observable Markov decision processes

(POMDPs)

Navigation for Flying Robots 65 Dr. Jirgen Sturm, Com

Kalman Filter

Bayaes filter with continuous states

puter Vision Group, TUM

State represented with a normal distribution

Developed in the late 1950’s

Kalman filter is very efficient (only requires a

few matrix operations per time step)

* Applications range from economics, weather

forecasting, satellite navigation to robotics and

many more

* Most relevant Bayes filter variant in practice

Visua

- exercise sheet 2

Navigation for Flying Robots 66 Dr. Jargen Sturm, Com

puter Vision Group, TUM

Example: Localization

= t=2, u=east, z=marker
= Bayes filter step 1: Apply observation model

Visual Navigation for Flying Robots 64 Dr. Jiirgen Sturm, Computer Vision Group, TUM

Normal Distribution

= Univariate normal distribution
X ~N(p,0)

m About 68% within
1 s.d. of mean

About 95%
within 2 s.d.
of mean

i

About 99%
within 3 s.d.
of mean

p—0o p Hn+o

Visual Navigation for Flying Robots 67 Dr. Jirgen Sturm, Computer Vision Group, TUM



Normal Distribution

= Multivariate normal distribution
X ~N(p,X)
p(x) = N(x; 1, 2)

1 1 Ty-1
= oy e P (—§(x —p) BT (x - u))
* Example: 2-dimensional normal distribution

. . 7 v
pdf isolines / \

Linear Process Model

= Congider a time-discrete stochastic process
(Markov chain)

ALt—1 ALi+1 >

ol

= p(X1, Xo) =N (

Properties of Normal Distributions

= Linear transformation = remains Gaussian
X ~N(p,X),Y ~AX + B
=Y ~N(Au+ B, AEAT)

= |ntersection of two Gaussians = remains
Gaussian

X~ N(}U'l,-zl):X:Z ~ N(uz, 22)
Yo > 1

11+ 19,
214—22‘1 Z1+22‘2

al Navigation for Flying Robots Computer Visiol

Linear Process Model

= Consider a time-discrete stochastic process

= Represent the estimated state (belief) by a
Gaussian 2~ N (g, 2)

DI Iy

)



Linear Observations Kalman Filter
* Further, assume we make observations that Estimates the state z; of a discrete-time
depend linearly on the state controlled process that is governed by the linear

stochastic difference equation

xy = Axry 1+ Buy + €

Zp = O’It
and (linear) measurements of the state
Zt = C.Tf + (St
with 6; ~ N(0, R) and ¢ ~ N(0,Q)
Variables and Dimensions Kalman Filter
= State r e R” = Initial beliefis Gaussian
= Controls u & Rl Bcl(ggo) — N(gjo; 140, ZU)
= Observations z € R*
= Process equation = Next state is also Gaussian (linear

transformation)

= A v, 1+ B u +e
nxn nxl Ty~ N(A.Tf'tf] + B?.Lh Q)

Measurement equation

Zt = C Tt + (51‘
nxk Zp N(Cl'f, R)

sual Navigation for Flying Robots 78 Dr. Jargen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots

» Observations are also Gaussian



From Bayes Filter to Kalman Filter

For each time step, do
1. Apply motion model

Bel(ar) = [ plar | osw) Bel(wi) doicy
N(:}:,;A;r::;But,Q) Af{;rft_L:;:.,r_l,Et_1)

Kalman Filter

Forthe interested readers:

For each time step, do

full derivation (Chapter 3)

1. Apply motion model

See Probabilistic Robotics for

fi = Apy 1 + Buy
S, = ASAT +Q
2. Apply sensor model

o = fiy + K (2 — Cliy)
Et - (I - K{C)if

with K, = ,CT(CE,CT + R)™!

sual Navigation for Flying Robots 83 Dr. Jirgen Sturm, Computer Vision Group, TUM

From Bayes Filter to Kalman Filter

For each time step, do
2. Apply sensor model

Bel(x;) = n p(z | x) Bel(ay)
N (z6:Ca,R) N (43014, 54)

= N(CL},; e + Kt(Zf — Cﬂ), (I — KfC)S)
= N (@; pi, 24)

with K, = £,CT(CE,CT + R)™!

sual Navigation for Flying Robots 82 Dr. Jiirgen Sturm, Computer Vision Group, V

Kalman Filter

= Highly efficient: Polynomial in the
measurement dimensionality k and state
dimensionality n:

O(kQ.STB 4 n?)

= Optimal for linear Gaussian systems!
= Most robotics systems are nonlinear!

sual Navigation for Flying Robots 84 Dr. Jirgen Sturm, Computer Vision Group, V



Nonlinear Dynamical Systems Taylor Expansion
* Most realistic robotic problems involve = Solution: Linearize both functions
nonlinear functions = Motion function
= Motion function Ag(pte—1,u
g1, up) = g(pe—1, 1) + %(5@—1 — fi-1)
Tt-1
T = g(us, 21-1) = g(p—1,w) + Ge(wi—1 — py—1)
= Observation function = Observation function
_ h(p
2 = hizt) h(ze) =~ h(fi) + Ok (zr — )
aﬂ?f
= h(f) + Hy(x; — 1)
Extended Kalman Filter Example
For each time Step, do For the interested readers: = 2D case

See Probabilistic Robotics for

1 Apply motion model full derivation (Chapter 3)

State x = (JL Y w)T
Odometry u= (i § o)

fit = g(pe—1,ur)
S =GXG +Q with G, =

Ag(pre—1,uz) T

Observations of visual marker z = (z y ¥)

Oy :
2. Apply sensor model e (relative to robot pose)
pe = iz + Ki(z — h(jiz))
Ef = (I — Kth)Ef
Oh(fi)

with K; = ¥, H,' (H,%H, + R) ' and H; =

8.’1’}
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= Motion Function and its derivative
x + (cos(v)x — sin(¢)y) At

* Now with observations (limited visibility)

Example

g(x,) = | y+ (sin(w)i + cos()g) At

W+ At

_ dg(x,u)
00

Example

Assume robot knows correct starting pose

15

10 ¢

1

1 0 (—sin(y)d — cos(v)y)At

=10 1 (cos(¥)i+ sin(v)y)At

Example

= Dead reckoning (no observations)
= |Large process noise in x+y

15 - . r . -

10 |

Example

= Now with observations (limited visibility)
= Assume robot knows correct starting pose

15 T —

10 |

-5 0 5 10 15



Example Example

* Now with observations (limited visibility) = What if the initial pose (x+y) is wrong?
= Assume robot knows correct starting pose
0+ - G
IP' 75-5 (1] 5 10 15 {h
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Example Example
* What if the initial pose (x+y) is wrong? = What if the initial pose (x+y+yaw)is wrong?
i 15 T A
0 = 0
€] (C]
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Example

* |f we are aware of a bad initial guess, we set
the initial sigma to a large value (large

uncertainty)
€]
N 5|
Summary

* Observations and actions are inherently noisy
= Knowledge about state is inherently uncertain
" Probability theory
» Probabilistic sensor and motion models
= Bayes Filter, Histogram Filter, Kalman Filter,

Examples

L
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Example
15 oo -
5.

ying Robots



