Script generated by TTT

Title: Seidl: Virtual_Machines (27.06.2016)

Date: Mon Jun 27 10:22:47 CEST 2016

Duration: 90:13 min

Pages: 53

The instruction sequence:
term
next

is executed before a thread is terminated.

Therefore, we store them at the location f.

The instruction next switches to the next executable thread. Before that, though,

e ... the last stack frame must be popped and the result be stored in the table
JTab at offset 0;

e ... the thread must be marked as terminated, e.g., by additionally setting the PC
to —1;

e ... all threads must be notified which have waited for the termination.

For the instruction term this means:

430

vm2016.pdf — folien
File Edit View Go Bookmarks Help

Eaihd 430 |of 469 Ii) IQ.‘

110,27%

v

The instruction sequence:
term
next

is executed before a thread is terminated.

Therefore, we store them at the location f.
The instruction next switches to the next executable thread. Before that, though,

e .. the last stack frame must be popped and the result be stored in the table
JTab at offset 0;

e .. the thread must be marked as terminated, e.g., by additionally setting the PC
to —1;

e .. all threads must be notified which have waited for the termination.

For the instruction term this means:

PC =-1;
JTab[CT][0] = S[SP];
freeStack(SP);
while (0 < tid = dequeue (JTab[CT][1]))
enqueue (RQ, tid);
The run-time function freeStack (int adr) removes the (one-element) stack at
the location adr :

freeStack (adr)

431

53 Mutual Exclusion

A mutex is an (abstract) datatype (in the heap) which should allow the programmer
to dedicate exclusive access to a shared resource (mutual exclusion).

The datatype supports the following operations:

Mutex * newMutex (); — “treates a new mutex;
void lock (Mutex *me); — tries to acquire the mutex;
void unlock (Mutex *me); — releases the mutex;

Caveat

A thread is only allowed to release a mutex if it has owned it beforehand.

432

A mutex me consists of:

e the tid of the current owner (or —1 if there is no one);

e the queue BQ of blocked threads which want to acquire the mutex.

1 BQ

0 owner

433

53 Mutual Exclusion

A mutex is an (abstract) datatype (in the heap) which should allow the programmer
to dedicate exclusive access to a shared resource (mutual exclusion).

The datatype supports the following operations:

Mutex * newMutex (); — creates a new mutex;
void lock (Mutex #me); — tries to acquire the mutex;
void unlock (Mutex *me); — releases the mutex;

Caveat

A thread is only allowed to release a mutex if it has owned it beforehand.

432
Then we translate:
codeg newMutex () p = newMutex
where:
newMutex
434

Then we translate: Then we translate:

codeg newMutex () p = newMutex code lock (e); p = codegep
lock

where:

CT [17]

newMutex
lock
434 435
If the mutex is already-owned by someone, the current thread is interrupted: Accordingly, we translate:
C CT |
17 code unlock (e); p = codegep
unlock
5
lock where:

CT CT

if (S[S[SP]] < 0) S[S[SP- -] = CT;

else {

unlock
enqueue (S[SP--]+1, CT);

next;

436 437

If the queue BQ is empty, we release the mutex:

CT CT [5]

Accordingly,

where:

unlock

if (S[S[SP]] # CT) Error (“lllegal unlock!");
if (0 > tid = dequeue (S[SP]+1)) S[S[SP--]| = -1;
else {

S[S[SP-]] = tid;

enqueue (RQ, tid);

438

we translate:

code unlock (e); p = codegep

unlock

CT Y cT
[1

17

(5]

unlock

437

If the queue BQ is empty, we release the mutex:

CT CT [5]

unlock

if (S[S[SP]] # CT) Error (“lllegal unlock!");
if (0 > tid = dequeue (S[SP]+1)) S[S[SP--]] = -1;
else {

S[S[SP--]] = tid;

enqueue (RQ, tid);

438

54 Waiting for Better Weather

It may happen that a thread owns a mutex but must wait until some extra condition
is true.

Then we want the thread to remain in-active until it is told otherwise.

For that, we use condition variables. A condition variable consists of a queue WQ

0 E wQ

of waiting threads.

439

For condition variables, we introduce the functions: For condition variables, we introduce the functions:

CondVar creates a new condition variable; CondVar * newCondVar (); — creates a new condition variable;
void wai enqueues the current thread; void wait (CondVar * cv, Mutex * me); — enqueues the current thread;
void signal (Copd¥ar=—% re-animates one waiting thread; void signal (CondVar * cv); — re-animates one waiting thread;
void broadcad }: re-animates all waiting threads. void broadcast (CondVar * cv); — re-animates all waiting threads.
440 440
Then we translate: After enqueuing the current thread, we release the mutex. After re-animation,

though, we must acquire the mutex again.

Therefore, we translate:
codeg newCondVar () p = newCondVar

code wait (eg,e1); p = codegey p

|:| codeg g p

newCondVar @‘-‘
unlock

where:

next
ﬂ lock

where ...

441 442

cr [5]

wait

443

CT [5]

wait

if (S[S[SP-1]] # CT) Error (“lllegal wait!");
enqueue (S[SP], CT); SP—;

443

Accordingly, we translate:

code signal (e); p = coderep
signal
RQ RQ
o -
signal

J

if (0 < tid = dequeue (S[SP]))
enqueue (RQ, tid);
SP-;

444
Accordingly, we translate:
code signal (¢); p = codegep
signal
RQ RQ
i
signal

if (0 < tid = dequeue (S[SP]))
enqueue (RQ, tid);
SP-;

444

17

Analogously:

code broadcast (¢); p = coderep

broadcast

where the instruction broadcast enqueues all threads from the queue WQ

into the ready-queue RQ

while (0 < tid = dequeue (S[SP]))
enqueue (RQ, tid);
SP--;

Caveat
The re-animated threads are not blocked !I!

When they become running, though, they first have to acquire their mutex.

445

Therefore, a semaphore consists of:
e a counter of type int;
e a mutex for synchronizing the semaphore operations;

e a condition variable.

typedef struct {
Mutex * me;
CondVar * cv;
int count;

} Sema;

447

55 Example: Semaphores

A semaphore is an abstract datatype which controls the access of a bounded number
of (identical) resources.

Operations
Sema #* newSema (int n) — creates a new semaphore;
void Up (Sema * s) — increases the number of free resources;
void Down (Sema * s) — decreases the number of available resources.

446

Sema # newSema (int n) {
Sema * s;
s = (Sema %) malloc (sizeof (Sema));
s—me = newMutex ();
s—cv = newCondVar ();
s—rcount = n;

return (s);

448

The translation of the body amounts to:

alloc 1
loadc 3
new

storer 1

pop

newMutex newCondVar
loadr 1 loadr 1
store loade 1
pop add
store
pop
449

Sema * newSema (int n) {
Sema * s;

s = (Sema *) malloc (sizeof (Sema));
s—me = newMutex ();
s—cv = newCondVar ();

s—rcount = n;

return (s);

448

loadr -2
loadr 1
loadc 2
add

store

pop

loadr 1
storer -2

return

Sema # newSema (int n) {

Sema * s;

s = (Sema #) malloc (sizeof (Sema));

s—me = newMutex ();
s—cv = newCondVar ();

s—rcount = n;

return (s);

448
The translation of the body amounts to:
alloc 1 newMutex newCondVar
loadc 3 loadr 1 loadr 1
new store loade 1
storer 1 pop add
pop store
pop
449

loadr -2
loadr 1
loadc 2
add

store

pop

loadr 1
storer -2

return

The function

Down() decrements the counter.

If the counter becomes negative, wait is called:

The function

void Down (Sema * s) {
Mutex *me;
me = s—rme;
lock (me);
s—count— —;
if (s—>count < 0) wait (s—cv,me);
unlock (me);

450

Down() decrements the counter.

If the counter becomes negative, wait is called:

void Down (Sema = s) {
Mutex #me;
me = s—»me;
lock (me);
s—rcount— —;
if (s—count < 0) wait (s—cv,me);
unlock (me);

450

The translation of the body amounts to:

alloc 1 add
loadr -2 load
load loade 1
storer 1 sub
lock loadr -2
loadc 2
loadr -2 add
loadc 2 store

The translation of the body amounts to:

alloc 1 add
P CD> loadr -2 load

load loadc 1

storer 1 sub

ﬂrf lock loadr -2
wr loadc 2

loadr -2 add

loadc 2 store

loadc 0 wait
less dup
jumpz A unlock
loadr 1 next
loadr -2 lock

loadc 1 A: loadr 1

add unlock

load return
451

loadc 0 wait

less dup

jumpz A unlock

loadr 1

loadr -2 :;:;bﬁ__ 4.((

loadc 1 A: loadr 1
add unlock

load return

451

The function Up() increments the counter again.

If it is afterwards not yet positive, there still must exist waiting threads. One of these

is sent a signal:

void Up (Sema * s) {
Mutex *me;
me = s—me;
lock (me);
s—rcount++;
if (s—count < 0) signal (s—cv);
unlock (me);

452

The function Up() increments the counter again.

If it is afterwards not yet positive, there still must exist waiting threads. One of these
is sent a signal:

void Up (Sema = s) {
Mutex #me;
me = s—rme;
lock (me);

if ﬁﬂcount < 0) signal (s—cv);

unlock (me);

452

The translation of the body amounts to:

alloc 1
loadr -2
load

storer 1

lock

loadr -2

The translation of the body amounts to:

alloc 1
loadr -2
load

storer 1

lock

loadr -2

loadc 2
add
load
loadc 1
add
loadr -2
loadc 2

loadc 2
add
load
loadc 1
add
loadr -2
loadc 2

453

453

add
store
loadc 0

leq
jumpz A A:

loadr -2

add
store
loadc 0

leq
jumpz A A:

loadr -2

loadc 1
add
load
signal
loadr 1
unlock

return

loade 1
add
load
signal
loadr 1
unlock

return

The translation of the body amounts to:

alloc 1 loadc 2 add loadc 1
loadr -2 add store add
load load loadc 0 load
storer 1 loade 1 leq signal
lock add jumpz A A: loadr 1
loadr -2 unlock
loadr -2 loadc 2 loadr -2 return

v

453

56 Stack Management

Problem

e All threads live within the same storage.

e Every thread requires its own stack (at least conceptually).

1. Idea

Allocate for each new thread a fixed amount of storage space.

Then we implement:
void *newStack() { return mallec(M); }
void freeStack(void *adr) { free(adr); }

454

56 Stack Management

Problem

e All threads live within the same storage.

e Every thread requires its own stack (at least conceptually).

1. Idea

Allocate for each new thread a fixed amount of storage space.

Then we implement:
void *newStack() { return malloc(M); }
void freeStack(void *adr) { free(adr); }

454

Problem
e Some threads consume much, some only little stack space.

e The necessary space is statically typically unknown.

2. ldea
e Maintain all stacks in one joint Frame-Heap FH.

e Take care that the space inside the stack frame is sufficient at least for the
current function call.

e A global stack-pointer GSP points to the overall topmost stack cell ...

455

Problem
e Some threads consume much, some only little stack space.

e The necessary space is statically typically unknown.

2. ldea
e Maintain all stacks in one joint Frame-Heap FH.

e Take care that the space inside the stack frame is sufficient at least for the
current function call.

e A global stack-pointer GSP points to the overall topmost stack cell ...

455

Caveat

The de-allocated block may reside inside the stack!

We maintain a list of freed stack blocks.

This list supports a function
void insertBlock(int max, int min)
which allows to free single blocks.

e |f the block is on top of the stack, we pop the stack immediately;

e ... together with the blocks below — given that these have already been marked

as de-allocated.

e If the block is inside the stack, we merge it with neighbored free blocks:

457

GSP [= |

] thread 1

thread 2

Allocation and de-allocation of a stack frame makes use of the run-time functions:

int newFrame (int size) {
int result = GSP;
GSP = GSP+size;
return result;

}

void freeFrame(int sp, int size);

456

GSp [=N] GSP

freeBlock(...) E

458

GSP [> | GSP [=] | Approach

— We allocate a fresh block for every function call ...
freeBlock(...)

— — Problem

When ordering the block before the call, we do not yet know the space consumption

of the called function.

— We order the new block after entering the function body!

460 461

sP [} [i —

actual actual
parameters parameters

p T
SE D £ local J

variables

When entering the new function, we now allocate the new block ... Inparticular, the local variables reside in the new block ...

463 464

We address ...

e the formal parameters relatively to the frame-pointer;

e the local variables relatively to the stack-pointer.

Alternative:

We must re-organize the complete code generation ...

Passing of parameters in registers ...

465

ES We address ...

o the formal parameters relatively to the frame-pointer;

o the local variables relatively to the stack-pointer.

e We must re-organize the complete code generation ...
Alternative: Passing of parameters in registers ...
465

