Script generated by TTT

Title: Seidl: Virtual_Machines (09.05.2016)
Date: Mon May 09 10:23:10 CEST 2016
Duration: 89:00 min

Pages: 40

21 Optimizations |: Global Variables

Observation

e Functional programs construct many F- and C-objects.

e This requires the inclusion of (the bindings of) all global variables.

Recall, e.g., the construction of a closure for an expression e ...

173

In fact, the instruction update is the combination of the two actions:

popenv

rewrite 1

It overwrites the closure with the computed value.

[P — {42

codecepsd =

A

B:

where {zq,...,2g_1} = free(e) and

FP
update
—{1 1
pc
GP
172

getvar zp p sd

getvar z; p (sd+ 1)

getvar z,_1 p (sd+g—1)
mkvec g

mkeclos A

jump B

codeyep’' 0

update

o ={z— (Gi)|i=0,...,g—1}.

174

Idea

e Reuse Global Vectors, i.e. share Global Vectors!

e Profitable in the translation of let-expressions or function applications: Build one
Global Vector for the union of the free-variable sets of all let-definitions resp. all

arguments.

e Allocate (references to) global vectors with multiple uses in the stack frame like

local variables!

e Support the access to the current GP, e.g., by an instruction copyglob

175

e The optimization will cause Global Vectors to contain more components than

just references to the free the variables that occur in one expression ...

Disadvantage: Superfluous components in Global Vectors prevent the
deallocation of already useless heap objects == Space Leaks

Potential Remedy: Deletion of references from the global vector at the end of their

life times.

/Kn"{‘éa_ kﬂ(ar:t'

177

or [—=V T op [—={V[T

copyglob

SP++;
S[SP] = GP;

176

22 Optimizations Il: Closures

In some cases, the construction of closures can be avoided, namely for
e Basic values,
s Variables,

e Functions.

178

Basic Values
The construction of a closure for the value is at least as expensive as the

construction of the B-object itself!

Therefore:
loadc b

mkbasic

codec bpsd = codeybpsd

This replaces:

kvec 0
‘2 mkclos A

179

Example

Consider e=letreca=bandb=7 i

codey e 0 produces:

0 alloc2 3 rewrite 2 3 mkbasic 2

2 pushloc 0 2 loadc7 3 rewrite 1 3
3

The execution of this instruction sequence should deliver the basic value 7 ...

181

pushloc 1
eval

slide 2

Variables
Variables are either bound to values or to C-objects. Constructing another closure is

therefore superfluous. Therefore:

codecxpsd = getvarx psd
This replaces:
getvar x p sd mkclos A A: pushglob 0 update
mkvec 1 jump B eval B:
180
0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc 1
2 pushloc 0 2 loadc7 3 rewrite 1 3 eval

3 slide 2

loadc 7

185

0
2

0

alloc 2 3

pushloc 0 2 loadc7

rewrite 2

3

L_—>lc

-1

-1

—=C|-1] -1

184
alloc 2 3 rewrite 2 3
pushioe-@ 2 loadc7 3
mESEEE
— C| -1| -1

184

mkbasic 2 pushloc 1
rewrite 1 3 eval
3 slide 2
rewrite 2
mkbasic 2 pushloc 1
rewrite 1 3 eval
3 slide 2
rewrite 2

0 alloc2 3 rewrite 2 3

2 pushloc 0 2

ZeS e

loadc 7 3

189
Example
Consider e = letreca :@)min a.
codey e) 0 produces:
0 allec2 3 rewrite 2 3
2 pushloc 0 2 loadc 7 3

The execution of this instruction sequence should deliver the basic value 7 ...

181

mkbasic

rewrite 1

X < &

eval

mkbasic

rewrite 1

3
3

.

2
3
3

pushloc 1
eval

slide 2

~.

pushloc 1
eval

slide 2

Apparently, this optimization was not quite correct.

The Problem

Binding of variable y to variable x before x's dummy node is replaced!!

The Solution

cyclic definitions: reject sequences of definitions like
letreca=band...b=ain ...

acyclic definitions: order the definitions ¥ = x such that the dummy node for the
right side of x is already overwritten.

191

23 The Translation of a Program Expression

Execution of a program e starts with
PC=0 SP=FP=GP=-1
The expression ¢ must not contain free variables.

The value of e should be determined and then a halt instruction should be

executed.

codee = codeye@®0
halt

193

Functions

Functions are values, which are not evaluated further. Instead of generating code
that constructs a closure for an F-object, we generate code that constructs the

F-object directly.

Therefore:

codec (fun xp...x_; —e)psd = codey (funxg...x;_; —e) psd

192

Remarks

The code schemata as defined so far produce Spaghetti code.

Reason: Code for function bodies and closures placed directly behind the

instructions mkfunval resp. mkclos with a jump over this code.

Alternative: Place this code somewhere else, e.g. following the halt-instruction:
Advantage: Elimination of the direct jumps following mkfunval and mkclos.

Disadvantage: The code schemata are more complex as they would have to
accumulate the code pieces in a Code-Dump.

Solution

Disentangle the Spaghetti code in a subsequent optimization phase.

194

Example

0 loadc 17
1 mkbasic
1 pushloc 0
2 mkvec 1
2 mkfunval

A

~N N OO N

let a 17]in let f =

Disentanglement of the jumps produces:

mark B
loadc 42
mkbasic
pushloc 4

eval

apply

funb — a+ bl f 42

19

5

CRY

B: slide 2 1 pushloc1
halt 2 eval
2 getbasic
2 add
1 mkbasic
getbasic 1 return 1

e In order to construct a tuple, we collect sequence of references on the stack.

Then we construct a vector of these references in the heap using mkvec

e For returning components we use an

codey (eq, ..., ex-1) psd

codey (#je) psd

indexed access into the tuple.

cudu§€|} psd

cudcvel p(sd+1)

cudc*-/ek,l p(sd+k—1)
mkvec k

codey e p sd
get

&

In the case of CBV, we directly compute the values of the ¢;.

19

7

24 Structured Data

In the following, we extend our functional programming language by some datatypes.

24.1 Tuples

Constructors: (.,...,.), k-ary with k > 0;
Destructors: #j for j € Ny (Projections)
We extend the syntax of expressions correspondingly:

e == ... | (eo,....e-1) | #je

| et (xq,...,xk-1) =e1in e

t

196
%
Vig | Vig
- | |
getj -
—] ———

if (S[SP] == (Vig,v)) if (j<g)
S[SP] = v[jl;

else Error “Vector index out of bounds!”;

else Error “Vector expected!”;

198

Inversion: Accessing all components of a tuple simulataneously: Inversion: Accessing all components of a tuple simulataneously:

e=let (yo,..., k1) = €1 ineg e=let (yo,...,yk-1) = €1 inegy
This is translated as follows: This is translated as follows:
codeyepsd = codeye psd codeyepsd = codeye; psd

getvec k getvec k

codey ep o' (sd +k) codey e sd+k)

slide k slide k
where p'=p®{yi— (Lsd+i+1)|i=0,...,k—1}. where p’=pai=0,...,k—1}.
The instruction getvec k pushes the components of a vector of length k onto the The instruction getvec k pushes the components of a vector of length k onto the
stack: stack: ?‘ {

;3
199 199

V[T T 11 Vk[[T T T1] V[T T T]

getvec k getvec k
|~—— |-—— |-——

if (S[SP] == (V.k,v)) { if (S[SP] == (Vik,v)) {
SP-; SP—;
for(i=0; i<k; i++) { for(i=0; i<k; i++) {
SP++; S[SP] = v[il; SP++; S[SP] = vIil;
} else Error “Vector expected!”; | else Error “Vector expected!”;

200 200

24.2 Lists “ 24.2 Lists

Lists are constructed by the constructors: Lists are constructed by the constructors:

Z [1 "Nil", the empty list; Y : h | J M1 “Nil", the empty list;

ot “Cons”, right-associative, takes an element and a list. a "“Cons”, right-associative, takes an element and a list.
Access to list components is possible by match-expressions ... Access to list components is possible by match-expressions ...
Example The append function app: Example The append function app:J7
app = funly — match [with ,QJ trte. app = fun!y — match ! with
[0 -y RO
| h=t — hu(appty) \ @ — hu(appty)
201 201
accordingly, we extend the syntax of expressions:
nil
e = ...| [| (ex:zed)

| (match g with [] — ey | bt — e2)

SP++; S[SP] = new (L,Nil); Cdér_

Additionally, we need new heap objects:

empty list

s Sl0] s[1]
@ Consl | ‘ non—empty list
~—
ro

202 204

nil

SP++; S[SP] = new (L,Nil);

204

24.4 Pattern Matching

Consider the expression e = match eg w1th] 4@.

Evaluation of e requires:
e evaluation of ¢g;
e check, whether resulting value © is an L-object;
e if v is the empty list, evaluation of e; ...

e otherwise storing the two references of © on the stack and evaluation of e>. This
corresponds to binding / and t to the two components of v.

206

Z ::le cons

S[SP-1] = new (L,Cons, S[SP-1], S[SP]);
SP- -;

205

In consequence, we obtain (for CBN as for CBV):

codeyepsd = codey eg p sd
tlist A
codey e, psd
jump B
A: codeye pf (sd+2)
slide 2

where o' =p@&{hw (L,sd+1),t (L,sd+2)}.

The new instruction tlist A does the necessary checks and (in the case of Cons)
allocates two new local variables:

207

o [-
ist
| tlist A
- — |- —
b
h =S[SP]; — _—
i =
! (IE{IL};Ln% hsz' §[1§f»i1] = S[SP]—ss[1];
if (H[h] == (LNi) SP- -; S[SP] = S[SP]—s[0];
SP++; PC = A;
}
208 209
Example The (disentangled) body of the function app with app — (G,0) : Example The (disentangled) body of the function app with app — (G,0) :
0 targ 2 3 pushglob 0 0o G mark D 0 targ 2 3 pushglob 0 0 C mark D
0 pushloc 0 4 pushloc 2 3 0 pushloc 0 4 pushloc 2 3 pushglob 2
1 eval 5 pushloc 6 4 pushglob 1 1 eval 5 pushloc 6 4 pushglob 1
1 tlist A 6 mkvec 3 5 [pushelob 0 I 1 tlist A 6 mkvec 3 5 pushglob 0
]
0 pushloc 1 4 mkeclos C 6 eval 0 pushloc 1 4 mkclos C 6 eval
1 eval 4 cons 6 | apply -l 1 eval 4 cons 6 apply
————3
1 jump B 3 slide 2 1 D:| update 1 jump B 3 slide 2 1 D: update
2 A: pushloc 1 1 B: return?2 2 A: pushloc1 1 B: retun2
Remark Remark
Datatypes with more than two constructors need a generalization of the tlist Datatypes with more than two constructors need a generalization of the tlist
instruction, corresponding to a switch-instruction. instruction, corresponding to a switch-instruction.
210 210

24.5 Closures of Tuples and Lists

The general schema for codec

codec (eg, ..., ex—1) p sd

codec [] psd
codeg (e1::ez) psd

can be optimized for tuples and lists:

codey (eg, ... ex-1) psd

codey [] psd
codey (er::e2) psd

211

codec eg p sd

codec ey p (sd +1)

codec g_1 p (sd +k—1)
mkvec k

nil

codec ey p sd

codec e; p (sd + 1)

cons

