Script generated by TTT

Title: Seidl: Virtual_Machines (25.04.2016)
Date: Mon Apr 25 10:22:32 CEST 2016
Duration: 90:30 min

Pages: 40

NP H-E NP

--_-
new 7J

if (NP - S[SP] < EP

S[SP] =[NuLL;

else {
NP = NP - S[SP];
S[SP] = NP;

e NULL is a special pointer constant, identified with the integer constant 0.

e In the case of a collision of stack and heap the NULL-pointer is returned.

56

What can we do with pointers (pointer values)?

e set a pointer to a storage cell,

o dereference a pointer, access the value in a storage cell pointed to by a pointer.
There a two ways to set a pointer:

(1) Acall malloc(e) reserves a heap area of the size of the value of ¢ and
returns a pointer to this area:

codeg malloc(e) p = codeg ep

new

(2) The application of the address operator & to a variable returns a pointer to

this variable, i.e. its address (= L-value). Therefore:

coder (&e) p = coder e p

55

What can we do with pointers (pointer values)?

e set a pointer to a storage cell,

o dereference a pointer, access the value in a storage cell pointed to by a pointer.
There a two ways to set a pointer:

(1) Acall malloc(e) reserves a heap area of the size of the value of e and

returns a pointer to this area:

codeg malloc(e) p = codeg ep

new

(2) The application of the address operator & to a variable returns a pointer to

this variable, i.e. its address (= L-value). Therefore:

coder (&e) p = coder e p

55

Dereferencing of Pointers

The application of the operator % to the expression e retumns the contents of the

storage cell, whose address is the R-value of e:

coder (#e) p=codeg e p

Example Given the declarations

struct { int a[7]; struct { *b; };

int i, j;
struct f *pt;

and the expression ((pt —+ b) — a)[i +1]

Because of e—+a= (xe).a holds:

coder (e >a)p =

57

codeg e p
loadc (pa)
add

pt:

58

Dereferencing of Pointers

The application of the operator % to the expression e returns the contents of the

storage cell, whose address is the R-value of e:

coder (*e) p = codeg e p

Example Given the declarations

struct ¢ { int a[7]; struct t *b; };
int i, j;
struct ¢ *pt,;

and the expression ((pt — b) — a)[i +1]

Because of e—+a= (+e).a holds:
codep (e —+a)p = coderep
loadc (pa)
add
57

Be p={i— 1,j— 2,pt = 3,a— 0,b— 7} Then:

coder ((pt = b) —a)[i+1] p

= codeg ((pt = b) —a)p = codeg ((pt —=b) —a)p

codeg (i+1) p loada 1
loade 1 loade 1
mul add
add loade 1

mul

add

59

For arrays, their R-value equals their L-value. Therefore:

codeg ((pt —+b) »a)p = codeg (pt > b)p = loada 3
loadc 0 loadc 7
add add

load
loadc 0
add
In total, we obtain the instruction sequence:
loada 3 load loada 1 loade 1
loadc 7 loadc 0 loadc 1 mul
add add add add
60
coder (*e) p = codegep
coder x p = loadc (px)
coder (&e) p = codeLep
codeg e p = codeLep if e is an array
codeg (1D ex) p = codegey p
codeg ez p
op op instruction for operator ‘01

62

7 Conclusion

We tabulate the cases of the translation of expressions:

coder (e1e2]) p codeg e; p

codeg €z p

loade |t
mul
add if e1 has type t+ or #[]
coder (e.a) p = codeLep
loadc (pa)
add
61
codeg g p = loadcq g constant
coder (&1 =e2) p = coderes p
coder e; p
store
codeg e p = codeLep
load otherwise
63

code (s152) p

code (s152) p

loadc 7

loadc 2

loadc 10 // sizeof int[10]
mul / scaling

add

loadc 17

store

pop // endof 51

65

loadc 7

loade 2

loadc 10 // sizeof int[10]
mul / scaling

add

loadc 17

store

pop // endof 51

65

loadc 5

loadc 17

load

loade 3

loade 10 // sizeof int[10]
mul / scaling

add

store

pop // endof s

loadc 5

loade 17

load

loadc 3

loadc 10 // sizeof int[10]
mul / scaling

add

store

pop // endof sy

code (s152) p

code (s152) p

loadc 7
loadc 2
loade 10
mul

add
loadc 17

store

pop

loadc 7
loadc 2
loadec 10
mul

add
loadc 17

store

pop

// sizeof int[10]
/ scaling

// endof sy

65

// sizeof int[10]
/ scaling

/ endof s

65

loadc 5
loadc 17
load
loadc 3
loadc 10
mul
add

store

pop

loadc 5
loade 17
load
loadc 3
loadc 10
mul
add

store

pop

/ sizeof int[10]
// scaling

/f endof s

// sizeof int[10]
/ scaling

// endof s,

8 Freeing Occupied Storage

Problems

e The freed storage area is still referenced by other pointers (dangling references).

e After several deallocations, the storage could look like this (fragmentation):

66

9 Functions

The definition of a function consists of:
e a name by which it can be called;
e a specification of the formal parameters;
e a possible result type;
e a block of statements.
In C, we have:
codeg fp = loade{ f) = start address of the code for f

— Function names must be maintained within the address environment!

68

Potential Solutions

Trust the programmer. Manage freed storage in a particular data structure (free

list) == malloc or free my become expensive.
Do nothing, i.e.:
codefree(e); p = codegpep
pop
= simple and (in general) efficient.

Use an automatic, potentially “conservative” Garbage-Collection, which
occasionally collects certainly inaccessible heap space.

67

Example

main () {

int fac (int x) {

if (x < 0) ret int %
if (x < 0) return "= + fac(1);
else return x #/fa); . #

) P printf ("%d”, n);

At every point of execution, several instances (calls) of the same function may be
active, i.e., have been started, but not yet completed.

The recursion tree of the example:

~

-
printf

69

We conclude:

The formal parameters and local variables of the different calls of the same function

(the instances) must be kept separate.
Idea

Allocate a dedicated memory block for each call of a function.

In sequential programming languages, these memory blocks may be maintained on a
stack. Therefore, they are also callezi stack frames.

70

Caveat

The local variables receive relative addresses +1,+2,....

The formal parameters are placed below the organizational cells and therefore
have negative addresses relative to FP.

This organization is particularly well suited for function calls with variable
number of arguments as, e.g., for printf.

e The memory block of parameters is recycled for storing the return value of the

function.

Simplification: The return value fits into a single memory cell.

72

9.1 Memory Organization for Functions

sP
local variables
FP — = PCold |
FPold organizational
° cells
EPold

formal parameters /
return value

FP = Frame Pointer; points to the last organizational cell and is used for addressing
the formal parameters and local variables.

71

9.1 Memory Organization for Functions

SP ———»|
local variables
FP ——»| PCold o
-— A FPold Szﬁsamzahonal
~ 2 | EpPold
— 5 — —— formal parameters /
return value

FP = Frame Pointer; points to the last organizational cell and is used for addressing

the formal parameters and local variables.

7

Caveat
e The local variables receive relative addresses +1,+2,....

e The formal parameters are placed below the organizational cells and therefore
have negative addresses relative to FP.

e This organization is particularly well suited for function calls with variable
number of arguments as, e.g., for printf.

e The memory block of parameters is recycled for storing the return value of the

function.
Simplification: The return value fits into a single memory cell.
72
Caveat

e The local variables receive relative addresses +1,+2,....

e The formal parameters are placed below the organizational cells and therefore
have negative addresses relative to FP.

e This organization is particularly well suited for function calls with variable
number of arguments as, e.g., for printf.

e The memory block of parameters is recycled for storing the return value of the

function.

Simplification: The return value fits into a single memory cell.

72

9.1 Memory Organization for Functions

SP ———»|
local variables
FP ——» PCold
FPold organizational
° cells
EPold
formal parameters /
T return value

L]
FP = Frame Pointer;!points to the last organizational cell and is used for addressing

the formal parameterd and local variables.

'
¢

71

9.1 Memory Organization for Functions

<) local variables

FP ——»| PCold

SP ———»|

izational
TPold S;%Samza on
EPold
T D formal parameters /
<______.-/ return value

FP = Frame Pointer; points to the last organizational cell and is used for addressing

the formal parameters and local variables.

7

Caveat
e The local variables receive relative addresses +1,+2,....

e The formal parameters are placed below the organizational cells and therefore
have negative addresses relative to FP.

e This organization is particularly well suited for function calls with variable
number of arguments as, e.g., for printf.

e The memory block of parameters is recycled for storing the return value of the

function.

Simplification: The return value fits into a single memory cell.

72

9.2 Determining Address Environments

We distinguish two kinds of variables:
1. global/extern that are defined outside of functions;

2. local/intern /automatic (inkluding formal parameters) which are defined inside
functions.

The address environment p maps names onto pairs (tag,a) € {G,L} x 7
Caveat
e In general, there are further refined grades of visibility of variables.

e Different parts of a program may be translated relative to different address

environments!

74

Caveat
e The local variables receive relative addresses +1,+2,....

e The formal parameters are placed below the organizational cells and therefore
have negative addresses relative to FP.

e This organization is particularly well suited for function calls with variable
number of arguments as, e.g., for printf.

e The memory block of parameters is recycled for storing the return value of the

function.

Simplification: The return value fits into a single memory cell.

Tasks of a Translator for Functions
e Generate code for the body of the function!

e Generate code for calls!

73

Example

@ int i

struct list {

main () {
int k;
scanf ("%d/, &i);
scanlist (&I);

int info;
struct list * next;

11

int ith (struct list * x, int 7) { printf ("\n\t%d\n", ith (,7));

if (i < 1) return x —info; }

else return ith (x —nex 1);

Caveat

Address Environments Occurring in the Program
e The actual parameters are evaluated from right to left !!

IE Before the Function Definitions:
po: i o (G.1) e The first parameter resides directly below the organizational cells.
T (G,2 e Fora prototype 7 f(1y x1,..., Tk X;) we define:
e (L-2—ml) 3o (L—2—|al—...— |g)
E Inside of ith:
P i o= (L,-4) W —3
x = (L,-3)
I~ (G2
ith — (G, ith) :_—{"L.%_Q:;)

76 17

Caveat Address Environments Occurring in the Program

e The actual parameters are evaluated from right to left !! . .
P g E Before the Function Definitions:

e The first parameter resides directly below the organizational cells. 0
0 -
e Fora prototype T f(1y Xx1,..., T Xx) we define: I (G,2
x (L-2—|n]) x-—(L-2-|u|l-...—|n)
E Inside of ith:
p1: T (L, —4)
x (L, -3)
I = (G2
ith — (G, _ith)
76

77

Example

@ int i;
struct list {
int info;
struct list = next;

| ERE

int ith (struct list * x, int i) {
if (i < 1) return x —info;

else return ith (x —next, i — 1);

75

Caveat

main () {

int k;

scanf ("%d", &i);

scanlist (&1);

printf ("\n\t%d\n", ith (1.i));

e The actual parameters are evaluated from right to left !!

e The first parameter resides directly below the organizational cells.

e Fora prototype T f(1y Xx1,..., T Xx) we define:
e (L-2-|al) x—(L-2-|al-...—|t])
@ Inside of main:

M i (G,1)

I = (G2)

k — (L1)

ith — (G, _ith)
main > (G, main)

78

Caveat
e The actual parameters are evaluated from right to left !!
e The first parameter resides directly below the organizational cells.

e Fora prototype 7 f(1y x1,..., Tk X;) we define:

a (L-2=|nl) %= (@L-2-|al-...—|g)

17

9.3 Calling/Entering and Exiting/Leaving Functions

Assume that f is the current function, i.e., the caller, and f calls the function g, i.e.,

the callee.
The code for the call must be distributed between the caller and the callee.

The distribution can only be such that the code depending on information of the
caller must be generated for the caller and likewise for the callee.

Caveat

The space requirements of the actual paramters is only known to the caller ...

79

Actions when entering g:

Mo wohe

@™

Evaluating the actual parameters
Saving of FP, EP

Determining the start address of g
Setting of the new FP

Saving PC and

Jump to the beginning of g
Setting of new EP

Allocating of local variables

80

}mark

call

} enter
} alloc

are part of f

are partof g

