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4.5 The switch-Statement

Idea
e Multi-target branching in constant time!

e Use a jump table, which contains at its i-th position the jump to the beginning
of the i-th alternative.

e Realized by indexed jumps.

jumpi B
B S |
PC PC
PC = B + S[SP];
SP-—-;
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Simplification
We only regard switch-statements of the following form:

s = switch (e) {
case 0: ssp break;

case 1: ss; break;

case k —1: ss;_1 break;

default: ss;

}

5 is then translated into the instruction sequence:
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codesp = codepep Co:

check 0k B

Ck:

code ssg p B:  jump Cy
jump D

Jump Cy
code ssg p D:
jump D

e The Macro check 0k B checks, whether the R-value of e is in the interval
[0,k], and executes an indexed jump into the table B

e The jump table contains direct jumps to the respective alternatives.

e At the end of each altemative is an unconditional jump out of the

switch-statement.
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codesp = codeg e p Cq:

check 0 kB

—p > e

code ssq p B:  jump Cy
jump D

Jump Gy
code ssg p D:
jump D

e The Macro check 0k B checks, whether the R-value of ¢ is in the interval
[0,k], and executes an indexed jump into the table B

e The jump table contains direct jumps to the respective alternatives.

e At the end of each altemative is an unconditional jump out of the

switch-statement.
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Simplification

We only regard switch-statements of the following form:

s = switch (e) {
case 0: ssp break;

case 1: ss; break;

case k —1: ss;_q break;

default: ss;

s is then translated into the instruction sequence:
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check0kB = dup dup jumpi B
loadc 0 loadc k A:  pop
geq le loadc k
jumpz A jumpz A jumpi B

e The R-value of e is still needed for indexing after the comparison. It is therefore

copied before the comparison.
e This is done by the instruction  dup.

e The R-value of ¢ is replaced by k before the indexed jump is executed if it is less
than 0 or greater than k.
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check0kB = dup dup
loadc 0 loadc k
geq le
jumpz A jumpz A

A:

jumpi B
pop

loadc k
jumpi B

e The R-value of ¢ is still needed for indexing after the comparison. It is therefore

copied before the comparison.

e This is done by the instruction  dup.

e The R-value of e is replaced by k before the indexed jump is executed if it is less

than 0 or greater than k.
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codesp = codeg e p Co:  code ssg p
check 0 kB jump D

Cr: codessy p

jump D

B:  jump Cy

Jump Gy

e The Macro check 0k B checks, whether the R-value of ¢ is in the interval

[0,k], and executes an indexed jump into the table B

e The jump table contains direct jumps to the respective alternatives.

e At the end of each altemative is an unconditional jump out of the

switch-statement.
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Simplification

We only regard switch-statements of the following form:

s = switch (e) {
case 0: ssp break;

case 1: ss; break;

case k —1: ss;_q break;

default: ss;

s is then translated into the instruction sequence:
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Remark

e The jump table could be placed directly after the code for the Macro check.
This would save a few unconditional jumps. However, it may require to search
the switch-statement twice.

o If the table starts with # instead of 0, we have to decrease the R-value of e by u

before using it as an index.

e If all potential values of ¢ are definitely in the interval [0,k], the macro  check
is not needed.
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codesp = codepep Co: codessy p B:  jump Cy
check 0k B jump D
Jump Cy
Cy: code ssg p D:

ﬁ jump D

e The Macro check 0k B checks, whether the R-value of e is in the interval
[0,k], and executes an indexed jump into the table B

e The jump table contains direct jumps to the respective alternatives.

e At the end of each altemative is an unconditional jump out of the

switch-statement.
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5 Storage Allocation for Variables

Goal:

Associate statically, i.e. at compile time, with each variable x a fixed (relative)

address px

Assumptions
e variables of basic types, e.g. int, ... occupy one storage cell.

e variables are allocated in the store in the order, in which they are declared,

starting at address 1.

Consequently, we obtain for the declaration d =t xy; ... ty xx;  (#; basic type)
the address environment p such that

pxi=i, i=1,..k
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5 Storage Allocation for Variables

Goal:

Associate statically, i.e. at compile time, with each variable x a fixed (relative)

address px

Assumptions
e variables of basic types, e.g. int, ... occupy one storage cell.

e variables are allocated in the store in the order, in which they are declared,

starting at address 1.
Consequently, we obtain for the declaration d =t x1; ... ty xy;  (t; basic type)

the address environment p such that

pxi=i, i=1,...k
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5.1 Arrays
Example int [11]

The array a consists of 11 components and therefore needs 11 cells.
pa is the address of the component  a[0].

a[10]

— > al0]
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Task
Extend code; and codeg to expressions with accesses to array components.

Be tHe] a; the declaration of an array  a.

To determine the start address of a component afi] , we compute
pa+ |t| * (R-value of i).

In consequence:

codep ale]p = loadc (pa)
codeg € p
loadc |t
mul

add

. Or more general:
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We need a function sizeof (notation: | - |), computing the space requirement of a
type:

1 if t basic
k-|¥ ift = [k

Accordingly, we obtain for the declaration d =ty x1; ... t xx;

px; = 1
pxi = pxi-1+ |t fori>1
Since | - | can be computed at compile time, also p can be computed at compile time.
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Task
Extend coder. and coder to expressions with accesses to array components.

Be t[e] a; the declaration of an array 4.

To determine the start address of a component afi] , we compute
pa+ |t| = (Rvalue of i).

In consequence:

codep ale] p = loadc (pa)
coder e p
loade |t
mul

add

. Or more genera\:
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We need a function sizeof (notation: | - |), computing the space requirement of a
type:

1 if t basic
k| ift = V'[k]

Accordingly, we obtain for the declaration d =ty xy; ... t x;

pxy = 1
pPxXi = pxi_1+ |t fori >1
Since | - | can be computed at compile time, also p can be computed at compile time.
47
codep erfe2] p =  codege p

codeg ez p
loadc |t
mul
add

Remark
e In C, an array is a pointer. A declared array a is a pointer-constant, whose
R-value is the start address of the array.
e Formally, we define for an array e: codeg e p = codeL e p
e In C, the following are equivalent (as L-values):
2[4 al2] a+2

Normalization: Array names and expressions evaluating to arrays occur in front of
index brackets, index expressions inside the index brackets.
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Task
Extend coder and coder to expressions with accesses to array components.

Be tlc] a; the declaration of an array 4.

To determine the start address of a component afi] , we compute
pa+ |t = (R-value of i).

In consequence:

coder ale] p = loadc (pa)
codeg e p
loadc |t
mul

add

. Or more general:
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5.2  Structures

o

In Modula and Pascal, structures are called Records.

x, @

Simplification

Names of structure components are not used elsewhere.
Alternatively, one could manage a separate environment py for each structure
type st.

Be struct { int 4; int b; } x; part of a declaration list.
e x has as relative address the address of the first cell allocated for the structure.

e The components have addresses relative to the start address of the structure. In
the example, these are a— 0, b— 1.
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Let P = struct { ¢1;... b c; }. We have Example

Be struct {intg; int b; } x; such that p={x+— 13,0+ 0,br 1}.

k
o= Y |t This yields:
i=1
pc; = 0 and coder (x.b) p = loadc 13
pci = pcioy+ |1 fori>1 loadc 1
add
We thus obtain:
coder (ec) p = codeLep
loade (pc)
add
51 52
Example
Be struct {int a;int b; } x; such that p={x++ 13,2+ 0,b+> 1}. 6 Pointer and Dynamic Storage Management
This yields:
coder (xb)p = loadc 13 Ffomt‘er allow ﬁ.]e access to anonyr-no-us, dynamically generated objects, whose life
time is not subject to the LIFO-principle.
loadc 1
dd ——= We need another potentially unbounded storage area H — the Heap.
a

s [ H

1 R "
SP EP£®

New Pointer; points to the lowest occupied heap cell.

I

NP
EP

B

Extreme Pointer; points to the uppermost cell, to which SP can point
(during execution of the actual function).
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Idea What can we do with pointers (pointer values)?

e set a pointer to a storage cell,
e Stack and Heap grow toward each other in S, but must not collide. (Stack
Overflow). o dereference a pointer, access the value in a storage cell pointed to by a pointer.

e A collision may be caused by an increment of SP or a decrement of NP. There a two ways to set a pointer:

(1) Acall malloc(e) reserves a heap area of the size of the value of ¢ and
returns a pointer to this area:

e EP saves us the check for collision at the stack operations.

e The checks at heap allocations are still necessary.
codeg malloc(e) p = codeg ep

new

(2)  The application of the address operator & to a variable returns a pointer to

this variable, i.e. its address (= L-value). Therefore:

coder (&e) p = coder e p
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