Script generated by TTT

Title: Seidl: Virtual_Machines (18.04.2016)
Date: Mon Apr 18 10:07:56 CEST 2016
Duration: 104:23 min

Pages: 29

4.5 The switch-Statement

Idea
e Multi-target branching in constant time!

e Use a jump table, which contains at its i-th position the jump to the beginning
of the i-th alternative.

e Realized by indexed jumps.

jumpi B
B S |
PC PC
PC = B + S[SP];
SP-—-;

39

4.5 The switch-Statement

Idea
e Multi-target branching in constant time!

e Use a jump table, which contains at its i-th position the jump to the beginning
of the i-th alternative.

e Realized by indexed jumps.

jumpi B
g [
PC

PC
PC = B + S[SP];
SP-—-;

39

Simplification
We only regard switch-statements of the following form:

s = switch (e) {
case 0: ssp break;

case 1: ss; break;

case k —1: ss;_1 break;

default: ss;

}

5 is then translated into the instruction sequence:

40

codesp = codepep Co:

check 0k B

Ck:

code ssg p B: jump Cy
jump D

Jump Cy
code ssg p D:
jump D

e The Macro check 0k B checks, whether the R-value of e is in the interval
[0,k], and executes an indexed jump into the table B

e The jump table contains direct jumps to the respective alternatives.

e At the end of each altemative is an unconditional jump out of the

switch-statement.

41

codesp = codeg e p Cq:

check 0 kB

—p > e

code ssq p B: jump Cy
jump D

Jump Gy
code ssg p D:
jump D

e The Macro check 0k B checks, whether the R-value of ¢ is in the interval
[0,k], and executes an indexed jump into the table B

e The jump table contains direct jumps to the respective alternatives.

e At the end of each altemative is an unconditional jump out of the

switch-statement.

41

Simplification

We only regard switch-statements of the following form:

s = switch (e) {
case 0: ssp break;

case 1: ss; break;

case k —1: ss;_q break;

default: ss;

s is then translated into the instruction sequence:

40
check0kB = dup dup jumpi B
loadc 0 loadc k A: pop
geq le loadc k
jumpz A jumpz A jumpi B

e The R-value of e is still needed for indexing after the comparison. It is therefore

copied before the comparison.
e This is done by the instruction dup.

e The R-value of ¢ is replaced by k before the indexed jump is executed if it is less
than 0 or greater than k.

42

check0kB = dup dup
loadc 0 loadc k
geq le
jumpz A jumpz A

A:

jumpi B
pop

loadc k
jumpi B

e The R-value of ¢ is still needed for indexing after the comparison. It is therefore

copied before the comparison.

e This is done by the instruction dup.

e The R-value of e is replaced by k before the indexed jump is executed if it is less

than 0 or greater than k.

42

codesp = codeg e p Co: code ssg p
check 0 kB jump D

Cr: codessy p

jump D

B: jump Cy

Jump Gy

e The Macro check 0k B checks, whether the R-value of ¢ is in the interval

[0,k], and executes an indexed jump into the table B

e The jump table contains direct jumps to the respective alternatives.

e At the end of each altemative is an unconditional jump out of the

switch-statement.

41

Simplification

We only regard switch-statements of the following form:

s = switch (e) {
case 0: ssp break;

case 1: ss; break;

case k —1: ss;_q break;

default: ss;

s is then translated into the instruction sequence:

40

Remark

e The jump table could be placed directly after the code for the Macro check.
This would save a few unconditional jumps. However, it may require to search
the switch-statement twice.

o If the table starts with # instead of 0, we have to decrease the R-value of e by u

before using it as an index.

e If all potential values of ¢ are definitely in the interval [0,k], the macro check
is not needed.

44

codesp = codepep Co: codessy p B: jump Cy
check 0k B jump D
Jump Cy
Cy: code ssg p D:

ﬁ jump D

e The Macro check 0k B checks, whether the R-value of e is in the interval
[0,k], and executes an indexed jump into the table B

e The jump table contains direct jumps to the respective alternatives.

e At the end of each altemative is an unconditional jump out of the

switch-statement.

41

5 Storage Allocation for Variables

Goal:

Associate statically, i.e. at compile time, with each variable x a fixed (relative)

address px

Assumptions
e variables of basic types, e.g. int, ... occupy one storage cell.

e variables are allocated in the store in the order, in which they are declared,

starting at address 1.

Consequently, we obtain for the declaration d =t xy; ... ty xx; (#; basic type)
the address environment p such that

pxi=i, i=1,..k

45

Remark

e The jump table could be placed directly after the code for the Macro check.
This would save a few unconditional jumps. However, it may require to search

the switch-statement twice.

o If the table starts with u instead of 0, we have to decrease the R-value of e by u

before using it as an index.

e If all potential values of ¢ are definitely in the interval [0,k], the macro check

is not needed.

44

5 Storage Allocation for Variables

Goal:

Associate statically, i.e. at compile time, with each variable x a fixed (relative)

address px

Assumptions
e variables of basic types, e.g. int, ... occupy one storage cell.

e variables are allocated in the store in the order, in which they are declared,

starting at address 1.
Consequently, we obtain for the declaration d =t x1; ... ty xy; (t; basic type)

the address environment p such that

pxi=i, i=1,...k

45

5.1 Arrays
Example int [11]

The array a consists of 11 components and therefore needs 11 cells.
pa is the address of the component a[0].

a[10]

— > al0]

46

Task
Extend code; and codeg to expressions with accesses to array components.

Be tHe] a; the declaration of an array a.

To determine the start address of a component afi] , we compute
pa+ |t| * (R-value of i).

In consequence:

codep ale]p = loadc (pa)
codeg € p
loadc |t
mul

add

. Or more general:

48

We need a function sizeof (notation: | - |), computing the space requirement of a
type:

1 if t basic
k-|¥ ift = [k

Accordingly, we obtain for the declaration d =ty x1; ... t xx;

px; = 1
pxi = pxi-1+ |t fori>1
Since | - | can be computed at compile time, also p can be computed at compile time.

47

Task
Extend coder. and coder to expressions with accesses to array components.

Be t[e] a; the declaration of an array 4.

To determine the start address of a component afi] , we compute
pa+ |t| = (Rvalue of i).

In consequence:

codep ale] p = loadc (pa)
coder e p
loade |t
mul

add

. Or more genera\:

48

We need a function sizeof (notation: | - |), computing the space requirement of a
type:

1 if t basic
k| ift = V'[k]

Accordingly, we obtain for the declaration d =ty xy; ... t x;

pxy = 1
pPxXi = pxi_1+ |t fori >1
Since | - | can be computed at compile time, also p can be computed at compile time.
47
codep erfe2] p = codege p

codeg ez p
loadc |t
mul
add

Remark
e In C, an array is a pointer. A declared array a is a pointer-constant, whose
R-value is the start address of the array.
e Formally, we define for an array e: codeg e p = codeL e p
e In C, the following are equivalent (as L-values):
2[4 al2] a+2

Normalization: Array names and expressions evaluating to arrays occur in front of
index brackets, index expressions inside the index brackets.

49

Task
Extend coder and coder to expressions with accesses to array components.

Be tlc] a; the declaration of an array 4.

To determine the start address of a component afi] , we compute
pa+ |t = (R-value of i).

In consequence:

coder ale] p = loadc (pa)
codeg e p
loadc |t
mul

add

. Or more general:

48

5.2 Structures

o

In Modula and Pascal, structures are called Records.

x, @

Simplification

Names of structure components are not used elsewhere.
Alternatively, one could manage a separate environment py for each structure
type st.

Be struct { int 4; int b; } x; part of a declaration list.
e x has as relative address the address of the first cell allocated for the structure.

e The components have addresses relative to the start address of the structure. In
the example, these are a— 0, b— 1.

50

Let P = struct { ¢1;... b c; }. We have Example

Be struct {intg; int b; } x; such that p={x+— 13,0+ 0,br 1}.

k
o= Y |t This yields:
i=1
pc; = 0 and coder (x.b) p = loadc 13
pci = pcioy+ |1 fori>1 loadc 1
add
We thus obtain:
coder (ec) p = codeLep
loade (pc)
add
51 52
Example
Be struct {int a;int b; } x; such that p={x++ 13,2+ 0,b+> 1}. 6 Pointer and Dynamic Storage Management
This yields:
coder (xb)p = loadc 13 Ffomt‘er allow ﬁ.]e access to anonyr-no-us, dynamically generated objects, whose life
time is not subject to the LIFO-principle.
loadc 1
dd ——= We need another potentially unbounded storage area H — the Heap.
a

s [H

1 R "
SP EP£®

New Pointer; points to the lowest occupied heap cell.

I

NP
EP

B

Extreme Pointer; points to the uppermost cell, to which SP can point
(during execution of the actual function).

52 53

Idea What can we do with pointers (pointer values)?

e set a pointer to a storage cell,
e Stack and Heap grow toward each other in S, but must not collide. (Stack
Overflow). o dereference a pointer, access the value in a storage cell pointed to by a pointer.

e A collision may be caused by an increment of SP or a decrement of NP. There a two ways to set a pointer:

(1) Acall malloc(e) reserves a heap area of the size of the value of ¢ and
returns a pointer to this area:

e EP saves us the check for collision at the stack operations.

e The checks at heap allocations are still necessary.
codeg malloc(e) p = codeg ep

new

(2) The application of the address operator & to a variable returns a pointer to

this variable, i.e. its address (= L-value). Therefore:

coder (&e) p = coder e p

54 55

