Script generated by TTT

Title: Seidl: Virtual_Machines (23.06.2015)
Date: Tue Jun 23 10:15:52 CEST 2015
Duration: 89:23 min

Pages: 43

Example The app-predicate:

app(K]Y,Z) « X=[]Y=2Z
app(K|Y.Z) « X=[H[X'], Z=[H|Z'], app(X, Y, Z’)

o If the root constructoris [], only the first clause is applicable.
o If the root constructor is [|], only the second clause is applicable.
e Every other root constructor should fail !

e Only if the first argument equals an unbound variable, both alternatives
mustbe tried ;-)

37 Clause Indexing
Observation

Often, predicates are implemented by case distinction on the first argument.

Inspecting the first argument, many alternatives can be excluded :-)

_ Failure is earlier detected :-)
ES Backirack points are earlier removed. :-))

Stack frames are earlier popped :-)))

Idea
¢ Introduce separate try chains for every possible constructor.
¢ Inspect the root node of the first argument.

¢ Depending on the result, perform an indexed jump to the appropriate try
chain.

Assume that the predicate p/k is defined by the sequence rr of clauses ry ... 1.

Let tchains rr denote the sequence of try chains as built up for the root
constructors occurring in unifications X; = t.

Example

Consider again the app-predicate, and assume that the code for the two clauses
start at addresses A; and A, respectively.

Then we obtain the following four try chains:

VAR: setbtp // variables NIL: jump A; // atom []
try Ay
delbtp CONS: jump Az // constructor [|]
jump Az
ELSE: fail // default
333

Then we generate for the predicate p/k:

codeprr = p/k: putrefl
getNode // extracts the root label
indexp/k //jumps to the try block

tchains rr
Aq codec
Ay : codec
335

Example

Consider again the app-predicate, and assume that the code for the two clauses
start at addresses A; and A», respectively.

Then we obtain the following four try chains:

VAR: setbtp // variables NIL: jump A; // atom []
try Ax
delbtp CONS: jump Az // constructor [|]
jump Az
ELSE: fail // default

The new instruction fail takes care of any constructor besides [| and |[|] ...

fail = backtrack()

It directly triggers backtracking :-)

The instruction getNode returns “R” if the pointer on top of the stack points
to an unbound variable. Otherwise, it returns the content of the heap object:

getNode

- getNode
N

e
Jjj» o

switch (H[S[SP]]) {

case (8, f/n): S[SP] = f/n; break;
case (A,a): S[SP] = a; break;
case (R,_): S[SP]=R;

1

The instruction index p/k performs an indexed jump to the appropriate try
chain:

PC famp (k)

PC = map (p/k,S[SP]);
SP-——;

337

38 Extension: The Cut Operator

Realistic Prolog additionally provides an operator “!” (cut) which explicitly
allows to prune the search space of backtracking,.

Example J J

branch(X,Y) + L (X, Y)
branch(X,Y) + q(XY)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the
left-hand side ...

339

The instruction index p/k performs an indexed jump to the appropriate try
chain:

PC fuap (k)

PC =map (p/kS[SP]);
SP-—;

The function map() returns, for a given predicate and node content, the start
address of the appropriate try chain :-)

It typically is defined through some hash table :-))

The Basic Idea

o We restore the oldBP from our current stack frame;

e We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.

38 Extension: The Cut Operator

Realistic Prolog additionally provides an operator “!” (cut) which explicitly

allows to prune the search space of backtracking.

Example

e I LA

branch(X,Y) + q(X,Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backirack points preceding the call to the

left-hand side ...

339

Example

Consider our example:

branch(X,Y) ¢+ p(X),!Lai(X,Y)
branch(X,Y) + q(X,Y)

‘We obtain:
setbtp A: pushenv2 C: prune lastmark
try A mark C pushenv2 putrefl
delbtp putref 1 putref 2
jump B call p/1 lastcall q1 /22

putref?
putref 2

move 22

jump qz2/2

The Basic Idea

e We restore the oldBP from our current stack frame;

¢ We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.

Example

Consider our example:

branch(X,Y) « p(X),5qi(X,Y)
branch(X,Y) « qa(X,Y)

In fact, an optimized translation even yields here:

setbtp A: pushenv2 C: prune

try A mark C pushenv 2 putref2
delbtp putref 1 move2 2
jump B callp/1

pushenv 2
putref 1
putref 2
move 22

jump q2/2

The new instruction prune simply restores the backtrack pointer: Problem M\—':(}& C >< >) F(}() / (- >¥
) 40)(?

FP [— FP] If a clause is single, then (at least so far ;-) we have not stored the old BP inside
]] the stack frame :-(
(= prune] -
HP — HP — o , ,
TP TP For the cut to work also with singleclause predicates or try chains of length 1,
BP | BP | we insert an extra instruction setcut before the clausal code (or the jump):
BP = BPold;
343 344
The instruction setcut just stores the current value of BP: The Final Examplc Negation bY Failure
The predicate notP should succeed whenever p fails (and vice versa :-)
FP—> | FP—] |
- L notP(X) + p(X),!, fail
notP(X) +
— setcut —

where the goal fail never succeeds. Then we obtain for notP :

HP — HP —
TP | TP |
BP | BP L

setbtp A: pushenvl C: prune B: pushenvl
— — try A mark C pushenv 1 popenv
BPold = BP; delbtp putref 1 fail
jump B callp/1 popenv

The instruction setcut just stores the current value of BP: The instruction setcut just stores the current value of BP:
P —] | FP —= i — o

— setcut — seteut
HP = HP HP — HP
TP L TP || P || TP L
BP] BP T BP T BP 7

BPold = BP; BPold = BP;
345 345

The instruction setcut just stores the current value of BP: The Final Example Negation by Failure

The predicate notP should succeed whenever p fails (and vice versa :-)

FP—= | FP—> |
- L notP(X) + p(X),!, fail
notP(X) ¢
— setcut —
]] where the goal fail never succeeds. Then we obtain for notP :
HP — HP —
TP | TP |
BP | BP |
setbtp A: pushenvl C: prune B: pushenvl
I - try A mark C pushenv 1 popenv
BPold = BP; delbtp putref 1 fail
jump B callp/1 popenv

The Final Example Negation by Failure

The predicate notP should succeed whenever p fails (and vice versa :-)

notP(X)

«— p(X),!, fail
notP(X) +

where thegoal fail never succeeds. Then we obtain for notP:

setbtp A: pushenvl C: prune B: pushenv1
try A mark C pushenv 1 popenv
delbtp putref 1 fail
jump B call p/1 popenv

346

Operation of a stop-and-copy-Collector:

e Division of the heap into two parts, the to-space and the from-space —
which, after each collection flip their roles.

e Allocation with new in the current from-space.

e In case of memory exhaustion, call of the collector.

The Phases of the Collection:

1. Marking of all reachable objects in the from-space.
2. Copying of all marked objects into the to-space.
3. Correction of references.

4. Exchange of from-space and to-space.

39 Garbage Collection

¢ Both during execution of a MaMa- as well as a WiM-programs, it may
happen that some objects can no longer be reached through references.

e Obviously, they cannot affect the further program execution. Therefore,
these objects are called garbage.

e Their storage space should be freed and reused for the creation of other
objects.

Caveat

The WiM provides some kind of heap de-allocation. This, however, only frees
the storage of failed alternatives !l

347

(1) Mark: Detection of live objects:
e all references in the stack point to live objects;

¢ every reference of a live object points to a live object.

Graph Reachability

B

351

=i

354

>

350

353

[Ty

[Ty

N

1A

Remarks

Marking, copying and placing a forward reference can be squeezed into a
single pass.
A second pass then is only required to correct the references.

If the heap objects are traversed in post-order, most of the references can be
corrected in the same pass.

Only references to not yet copied objects must be patched later-on.

Overall, the run-time of ge is proportional only to the number of live
objects.

Remarks

Marking, copying and placing a forward reference can be squeezed into a
single pass.
A second pass then is only required to correct the references.

If the heap objects are traversed in post-order, most of the references can be
corrected in the same pass.

Only references to not yet copied objects must be patched later-on.

Overall, the run-time of ge is proportional only to the number of live
objects.

Caveat

The garbage collection of the WiM must harmonize with backtracking.

This means: *4"‘|:|

d
e The relative position of heap objects must not change during copying :-!! b
e The heap references in the trail must be updated to the new positions.
c
e If heap objects are collected which have been created before the last |:| v
backtrack point, then also the heap pointers in the stack must be updated. \
— = a

Remarks

e While marking still visits only live objects, copying requires a separate
sequential pass over the from-space.

e Therefore, the run-time of copying is proportional to the total amount of
from-space :-(

369

Remarks

e While marking still visits only live objects, copying requires a separate
sequential pass over the from-space.

s Therefore, the run-time of copying is proportional to the total amount of
from-space :~(

369

Classes and Objects

370

