Script generated by TTT

Title: Seidl: Virtual_Machines (16.06.2015)
Date: Tue Jun 16 10:16:14 CEST 2015
Duration: 90:43 min

Pages: 46

The Function unify()

e ... takes two heap addresses.

For each call, we guarantee that these are maximally de-referenced.

e ... checks whether the two addresses are already identical.
If so, does nothing :-)

e ... binds younger variables (larger addresses) to older variables (smaller
addresses);

e ... when binding a variable to a term, checks whether the variable occurs
inside the tetm =——= occur-check;

e ... records newly created bindings;

e ... may fail. Then backtracking is initiated.

262

The instruction unify calls the run-time function unify() for the
topmost two references:

iﬁ@ i

unify (S[SP-1], S[SP]);
SP = 5P-2;

261

bool unify (ref u, ref v) {
if (u == v) return true;

if (Hlul == (R,.)) {
if (HLv] == (R,.)) {

if (u>v) {
H[ul = (R,v); trail (u); return true;
} else {

Hlv] = (R,u); trail (v); return true;
}
} elseif (l:heck (u,v)] {

H[ul = (R,v); trail (u); return true;
} else {

backtrack(); return false;

263

if ((HIvl == R, {
if (check (v,u)) {

Hlv] = (R,w); trail (v); return true;
} else {
backtrack(); return false;

}
}
if (H[ul==(A,a) &% H[v]==(A,a))
return true;
if (H[ul==(S, f/n) && H[v]==(S, f/n)) {
for (int i=1; i<=n; i++)
if(lunify (deref (H[u+il), deref (H[v+i])) return false;
return true;

}
backtrack(); return false;
}
264
o)
e
(A a
S|f2
,/-7 \;] TN
- D
(R {x

266

s|f/2

S|f.’2

265

S|f2

S|f2

267

tr2

fr2

268

fr2

fr2

269

The run-time function trail() records the a potential new binding.
The run-time function backtrack() initiates backiracking.

The auxiliary function check() performs the occur-check: it tests
whether a variable (the first argument) occurs inside a term (the second
argument).

Often, this check is skipped, ie.,

bool check (ref u, ref v) { return true;}

270

The run-time function trail() records the a potential new binding.
The run-time function backtrack() initiates backtracking.

The auxiliary function check() performs the occur-check: it tests
whether a variable (the first argument) occurs inside a term (the second
argument).

Often, this check is skipped, i.e.,

f ;i j check (ref u, ref v) { return true;}

Tetp X

270

Otherwise, we could implement the run-time function check() as follows:

bool check (ref u, ref v) {
if (u == v) return false;
if (HIv] == (8, f/m)) {
for (int i=1; i<=n; i++)
if (!check(u, deref (H[v+il)))
return false;

return true;

271

Discussion

e The translation of an equation X =1{ isverysimple :)

e Often the constructed cells immediately become garbage :-(

Idea 2

e Push a reference to the run-time binding of the left-hand side onto the stack.

e Avoid to construct sub-terms of t whenever possible !

e Translate each node of t into an instruction which performs the unifcation
with this node !!

codec (X=t)p = putXp
codey t p

273

Discussion

e The translation of an equation X =1t isverysimple :)

e Often the constructed cells immediately become garbage :-(

Idea 2

e Push a reference to the run-time binding of the left-hand side onto the stack.
¢ Avoid to construct sub-terms of t whenever possible !

e Translate each node of f into an instruction which performs the unifcation
with this node !!

272

Let us first consider the unifcation code for atoms and variables only:

codegyap = uatoma
codey Xp = uvar (pX)
codey _p = pop

codey Xp = uref (pX)
// tobe continued :-)

274

Let us first consider the unifcation code for atoms and variables only:

codegyap = wuatoma
codey X p = uvar (pX)
codey _p = pop
codey Xp = uref (pX)
// tobe continued :-)
274

The instruction pop implements the unification with an anonymous
variable. It always succeeds :-)

pop O

SP-—;

277

The instruction uatoma implements the unification with the atom a:

uatom a

y AR
ﬁ‘" R[}>{Ala]

v = S[SP]; SP—;

switch (H[v]) {

case (A, a): break;

case (R,): Hlv] = (R, new (A, a));
trail (v); break;

default: backtrack();

1

e The run-time function trail() records the a potential new binding.

o The run-time function backtrack() initiates backtracking.

275

The instruction urefi implements the unification with an initialized variable:

@ uref

FP+i @ FP+i —-—

0 =mgu (x,)

unify (S[SP], deref (S[FP+i]));
SP-—;

It is only here that the run-time function unify() iscalled :-)

278

The instruction urefi implements the unification with an initialized variable:

@ uref i

FP+i @ FP+i ‘l-

unify (S[SP], deref (S[FP+i]));
S|

”

It is only here that the run-time function unify() iscalled :)

278

e The unification code performs a pre-order traversal over t.

e In case, execution hits at an unbound variable, we switch from checking to
building :-)

codey f(ty,...,ta) p = ustruct f/n A // test
son 1

codey b p

sonn

codey t, p

up B
A | check ivars(f(t,....t,)) p | // occur-check
codes f(t,... ta) p // building !!
bind // creation of bindings
B:
279

e The unification code performs a pre-order traversal over .

e In case, execution hits at an unbound variable, we switch from checking to
building :-)

codey flb, ..., th) p = ustruct f/n@ // test

son 1

codey £ p

check ivars(f(t1,...,ta)) p /] occur-check
coden f(t, ... tn) p // building !!
bind // creation of bindings

279

The Building Block:

Before constructing the new (sub-) term # for the binding, we must exclude that
it contains the variable X' on top of the stack !!!

This is the case iff the binding of no variable inside #' contains (a reference to) X'.
— fvars(t') returns the set of already initialized variables of t.

s Themacro check {Y1,...,Ys} p generates the necessary tests on
the variables Yy, ..., Y;:

check {Y1,...,Ya} p = check (p Y1)
check (p Y2)

check (p Yy)

e The unification code performs a pre-order traversal over ¢.

e In case, execution hits at an unbound variable, we switch from checking to
building :-)

codey f(t1, ...,) p = ustruct f/n A // test
son 1

code; ty p

sonn
codey t, p
up B
A: checkivars(f(h,...,tn)) p // occur-check
codes f(f, ... ta) p // building !!
bind // creation of bindings

279

The instruction checki checks whether the (unbound) variable on top of the
stack occurs inside the term bound to variable i.

If so, unification fails and backtracking is caused:

- |

if (!check (S[SP], deref S[FP+i]))
backtrack();

The Building Block:

Before constructing the new (sub-) term #' for the binding, we must exclude that
it contains the variable X' on top of the stack !!!

This is the case iff the binding of no variable inside # contains (a reference to) X’.

- ivars(t') returns the set of already initialized variables of t.

_— Themacro check {Y3,...,Y;} p generates the necessary tests on
the variables Yy,...,Y;:

check {Yy,...,Ya} p = check (p Y1)
check (p Y2)

check (p Yy)

The Building Block:

Before constructing the new (sub-) term # for the binding, we must exclude that
it contains the variable X' on top of the stack !!!

This is the case iff the binding of no variable inside #' contains (a reference to) X'.

— fvars(t') returns the set of already initialized variables of t.

s Themacro check {Y1,...,Ys} p generates the necessary tests on
the variables Yy, ..., Y;:

check {Y1,...,Ya} p = check (p Y1)
check (p Y2)

check (p Yy)

e The unification code performs a pre-order traversal over ¢. The instruction bind terminates the building block. It binds the (unbound)
e In case, execution hits at an unbound variable, we switch from checki variable to the constructed term:
building :-)
codey f(t1, ...,) p = ustruct f/n A
bind
son 1
code; ty p
sonn
codey t, p HIS[SP-1]] = (R, S[SP]);
up B trail (S[SP-1]);
A: checkivars(f(h,...,tn)) p // occur-check Sp=S5P-2;
a f(F, o b)) p // building !!
bind // creation of bindings
B: ...
279 282
The Pre-Order Traversal Once again the unification code for constructed terms:
codey f(t,...,ta) p = ustruct f/;@ // test
e First, we test whether the topmost reference is an unbound variable. .
son 1 // recursive descent
If so, we jump to the building block.
codei b p
e Then we compare the root node with the constructor f/n.
e Then we recursively descend to the children. sonn // recursive descent
e Then we pop the stack and proceed behind the unification code: codey t, p
uj @ // ascent to father
A check ivars(f(t1,..., t)) p
codey f(t,... bn) p
bind
B:
283 284

The instruction ustructf{/n A implements the test of the root node of a
structure:
ustruct f/n A

__ ustructf/n A
~

F) /F\;
N R
pc [] pC

switch (H[S[SP]]) {

case (S, f/n): break;

case (R,): PC = A; break;
default: backtrack();

}

... the argument reference is not yet popped :-)

285

It is the instruction up B which finally pops the reference to the structure:

up B

pC [] ﬂPC

SP--; PC =B;

The continuation address B is the next address after the build-section.

287

The instruction soni pushes the (reference to the) i-th sub-term from the
structure pointed at from the topmost reference:

son i

S[SP+1] = deref (H[S[SP]+i]); SP++;

The instruction soni pushes the (reference to the) i-th sub-term from the
structure pointed at from the topmost reference:

S[SP+1] = deref (H[S[SP]+i]); SP++;

Itis the instruction up B which finally pops the reference to the structure:

LIy
s p B
1] e ﬂPC

SP-—; PC =B;

The continuation address B is the next address after the build-section.

287

32 Clauses

Clausal code must

e allocate stack space for locals;
e evaluate the body;

e free the stack frame (whenever possible :-)

Let ¢ denote the clause: Xy Xe) < 81 s Gne

Let {Xy,..., X} denote the set of locals of r and p the address environment:

pX,':i

Remark The first k locals are always the formals :-)

289

Example

For our example term flg(XlY),a, 2) and
p={Xr—1,Y++2,Z 3} weobtain:

ustruct /3 A, up Bz Bs: son 2 putvar 2

son 1 uatom a putstructg/2
ustruct g/Z Ay A son 3 putatom a
son 1 uvar 3 putvar 3

uref 1 up B putstruct £/3
son 2 A

uvar 2 putref1 By:

Code size can grow quite considerably — for deep terms. In practice, though,
deep terms are “rare” :-)

288
Then we translate:
codec ¥ = pushenvm // allocates space for locals
codeg g1 p
codeg gn p
popenv

The instruction popenv restores FP and PC and tries to pop the current stack
frame.

It should succeed whenever program execution will never return to this stack
frame :-)

290

The instruction pushenvm sets the stack pointer:

pushenv m
m
l—‘ I] E l—‘l‘

SP=FP + m;

291

33 Predicates

A predicate q/k is defined through a sequence of clauses rr =r1...7¢.

The translation of 4/k provides the translations of the individual clauses r;.

In particular, we have for f=1

codeptr = g/k: codecn

If g/k is defined through several clauses, the first alternative must be tried.

On failure, the next alternative must be tried

—_ backtracking :-)

293

Example

Consider the clause r:

a(X,Y) + (X, X1),a(X1, Y)

X1
Then codecr yields: T ‘r(]\

pushenv 3 mark A A: markB B: popenv
putref 1 putref 3
putvar 3 putref 2
call f/2 call a/2
292

33.1 Backtracking

Whenever unifcation fails, we call the run-time function backtrack().

The goal is to roll back the whole computation to the (dynamically :-) latest
goal where another clause can be chosen —— the last backtrack point.

In order to undo intermediate variable bindings, we always have recorded
new bindings with the run-time function trail().

The run-time function trail() stores variables in the data-structure
trail:

294

0 I

TP == Trail Pointer

points to the topmost occupied Trail cell

295

A backtrack point is stack frame to which program execution possibly returns.

We need the code address for trying the next alternative (negative
continuation address);

e We save the old values of the registers HP, TP and BP.

e Note: The new BP will receive the value of the current FP' :-)

For this purpose, we use the corresponding four organizational cells:

FP ———=| posCont. | 0

FPold |-1
HPold | -2
TPold |-3
BPold | -4

negCont. | -5

297

The current stack frame where backtracking should return to is pointed at by the

extra register BP:

FP
BP

296

