Script generated by TTT

Title: Seidl: Virtual_Machines (16.06.2015)
Date: Tue Jun 16 10:16:14 CEST 2015
Duration: 90:43 min

Pages: 46

The Function unify()

e ... takes two heap addresses.

For each call, we guarantee that these are maximally de-referenced.

e ... checks whether the two addresses are already identical.
If so, does nothing  :-)

e ... binds younger variables (larger addresses) to older variables (smaller
addresses);

e ... when binding a variable to a term, checks whether the variable occurs
inside the tetm =——= occur-check;

e ... records newly created bindings;

e ... may fail. Then backtracking is initiated.
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The instruction  unify calls the run-time function unify() for the
topmost two references:

iﬁ@ i

unify (S[SP-1], S[SP]);
SP = 5P-2;
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bool unify (ref u, ref v) {
if (u == v) return true;

if (Hlul == (R,.)) {
if (HLv] == (R,.)) {

if (u>v) {
H[ul = (R,v); trail (u); return true;
} else {

Hlv] = (R,u); trail (v); return true;
}
} elseif (l:heck (u,v)] {

H[ul = (R,v); trail (u); return true;
} else {

backtrack(); return false;
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if ((HIvl == R, {
if (check (v,u)) {

Hlv] = (R,w); trail (v); return true;
} else {
backtrack(); return false;

}
}
if (H[ul==(A,a) &% H[v]==(A,a))
return true;
if (H[ul==(S, f/n) && H[v]==(S, f/n)) {
for (int i=1; i<=n; i++)
if(lunify (deref (H[u+il), deref (H[v+i])) return false;
return true;

}
backtrack(); return false;
}
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The run-time function trail() records the a potential new binding.
The run-time function backtrack() initiates backiracking.

The auxiliary function check() performs the occur-check: it tests
whether a variable (the first argument) occurs inside a term (the second
argument).

Often, this check is skipped, ie.,

bool check (ref u, ref v) { return true;}
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The run-time function trail() records the a potential new binding.
The run-time function backtrack() initiates backtracking.

The auxiliary function check() performs the occur-check: it tests
whether a variable (the first argument) occurs inside a term (the second
argument).

Often, this check is skipped, i.e.,

f ;i j check (ref u, ref v) { return true;}

Tetp X
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Otherwise, we could implement the run-time function check() as follows:

bool check (ref u, ref v) {
if (u == v) return false;
if (HIv] == (8, f/m)) {
for (int i=1; i<=n; i++)
if (!check(u, deref (H[v+il)))
return false;

return true;
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Discussion

e The translation of an equation X =1{ isverysimple :)

e Often the constructed cells immediately become garbage :-(

Idea 2

e Push a reference to the run-time binding of the left-hand side onto the stack.

e Avoid to construct sub-terms of t whenever possible !

e Translate each node of t into an instruction which performs the unifcation
with this node !!

codec (X=t)p = putXp
codey t p
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Discussion

e The translation of an equation X =1t isverysimple :)

e Often the constructed cells immediately become garbage :-(

Idea 2

e Push a reference to the run-time binding of the left-hand side onto the stack.
¢ Avoid to construct sub-terms of t whenever possible !

e Translate each node of f into an instruction which performs the unifcation
with this node !!
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Let us first consider the unifcation code for atoms and variables only:

codegyap = uatoma
codey Xp = uvar (pX)
codey _p = pop

codey Xp = uref (pX)
// tobe continued  :-)
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Let us first consider the unifcation code for atoms and variables only:

codegyap = wuatoma
codey X p = uvar (pX)
codey _p = pop
codey Xp = uref (pX)
// tobe continued  :-)
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The instruction pop implements the unification with an anonymous
variable. It always succeeds :-)

pop O

SP-—;
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The instruction uatoma implements the unification with the atom a:

uatom a

y AR
ﬁ‘" R[}>{Ala]

v = S[SP]; SP—;

switch (H[v]) {

case (A, a): break;

case (R, ): Hlv] = (R, new (A, a));
trail (v); break;

default: backtrack();

1

e The run-time function trail() records the a potential new binding.

o The run-time function backtrack() initiates backtracking.
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The instruction  urefi implements the unification with an initialized variable:

@ uref

FP+i @ FP+i —-—

0 =mgu (x, )

unify (S[SP], deref (S[FP+i]));
SP-—;

It is only here that the run-time function unify() iscalled :-)
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The instruction urefi implements the unification with an initialized variable:

@ uref i

FP+i @ FP+i ‘l-

unify (S[SP], deref (S[FP+i]));
S|

”

It is only here that the run-time function unify() iscalled :)
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e The unification code performs a pre-order traversal over t.

e In case, execution hits at an unbound variable, we switch from checking to
building :-)

codey f(ty,...,ta) p = ustruct f/n A // test
son 1

codey b p

sonn

codey t, p

up B
A | check ivars(f(t,....t,)) p | // occur-check
codes f(t,... ta) p // building !!
bind // creation of bindings
B:
279

e The unification code performs a pre-order traversal over .

e In case, execution hits at an unbound variable, we switch from checking to
building :-)

codey flb, ..., th) p = ustruct f/n@ // test

son 1

codey £ p

check ivars(f(t1,...,ta)) p /] occur-check
coden f(t, ... tn) p // building !!
bind // creation of bindings
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The Building Block:

Before constructing the new (sub-) term # for the binding, we must exclude that
it contains the variable X' on top of the stack !!!

This is the case iff the binding of no variable inside #' contains (a reference to) X'.
— fvars(t') returns the set of already initialized variables of t.

s Themacro check {Y1,...,Ys} p generates the necessary tests on
the variables Yy, ..., Y;:

check {Y1,...,Ya} p = check (p Y1)
check (p Y2)

check (p Yy)



e The unification code performs a pre-order traversal over ¢.

e In case, execution hits at an unbound variable, we switch from checking to
building :-)

codey f(t1, ..., ) p = ustruct f/n A // test
son 1

code; ty p

sonn
codey t, p
up B
A: checkivars(f(h,...,tn)) p  // occur-check
codes f(f, ... ta) p // building !!
bind // creation of bindings
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The instruction checki checks whether the (unbound) variable on top of the
stack occurs inside the term bound to variable i.

If so, unification fails and backtracking is caused:

- |

if (!check (S[SP], deref S[FP+i]))
backtrack();

The Building Block:

Before constructing the new (sub-) term #' for the binding, we must exclude that
it contains the variable X' on top of the stack !!!

This is the case iff the binding of no variable inside # contains (a reference to) X’.

- ivars(t') returns the set of already initialized variables of t.

_— Themacro check {Y3,...,Y;} p generates the necessary tests on
the variables Yy,...,Y;:

check {Yy,...,Ya} p = check (p Y1)
check (p Y2)

check (p Yy)

The Building Block:

Before constructing the new (sub-) term # for the binding, we must exclude that
it contains the variable X' on top of the stack !!!

This is the case iff the binding of no variable inside #' contains (a reference to) X'.

— fvars(t') returns the set of already initialized variables of t.

s Themacro check {Y1,...,Ys} p generates the necessary tests on
the variables Yy, ..., Y;:

check {Y1,...,Ya} p = check (p Y1)
check (p Y2)

check (p Yy)



e The unification code performs a pre-order traversal over ¢. The instruction bind terminates the building block. It binds the (unbound)
e In case, execution hits at an unbound variable, we switch from checki variable to the constructed term:
building :-)
codey f(t1, ..., ) p = ustruct f/n A
bind
son 1
code; ty p
sonn
codey t, p HIS[SP-1]] = (R, S[SP]);
up B trail (S[SP-1]);
A: checkivars(f(h,...,tn)) p  // occur-check Sp=S5P-2;
a f(F, o b)) p // building !!
bind // creation of bindings
B: ...
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The Pre-Order Traversal Once again the unification code for constructed terms:
codey f(t,...,ta) p = ustruct f/;@ // test
e First, we test whether the topmost reference is an unbound variable. .
son 1 // recursive descent
If so, we jump to the building block.
codei b p
e Then we compare the root node with the constructor f/n.
e Then we recursively descend to the children. sonn // recursive descent
e Then we pop the stack and proceed behind the unification code: codey t, p
uj @ // ascent to father
A check ivars(f(t1,..., t)) p
codey f(t,... bn) p
bind
B:
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The instruction ustructf{/n A implements the test of the root node of a
structure:
ustruct f/n A

__ ustructf/n A
~

F ) /F\;
N R
pc [] pC

switch (H[S[SP]]) {

case (S, f/n):  break;

case (R, ): PC = A; break;
default: backtrack();

}

... the argument reference is not yet popped  :-)
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It is the instruction up B which finally pops the reference to the structure:

up B

pC [ ] ﬂPC

SP--; PC =B;

The continuation address B is the next address after the build-section.
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The instruction soni pushes the (reference to the) i-th sub-term from the
structure pointed at from the topmost reference:

son i

S[SP+1] = deref (H[S[SP]+i]); SP++;

The instruction soni pushes the (reference to the) i-th sub-term from the
structure pointed at from the topmost reference:

S[SP+1] = deref (H[S[SP]+i]); SP++;



Itis the instruction up B which finally pops the reference to the structure:

LIy
s p B
1] e ﬂPC

SP-—; PC =B;

The continuation address B is the next address after the build-section.
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32 Clauses

Clausal code must

e allocate stack space for locals;
e evaluate the body;

e free the stack frame (whenever possible :-)

Let ¢ denote the clause: Xy Xe) < 81 s Gne

Let {Xy,..., X} denote the set of locals of r and p the address environment:

pX,':i

Remark  The first k locals are always the formals :-)
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Example

For our example term flg(XlY),a, 2) and
p={Xr—1,Y++2,Z 3} weobtain:

ustruct /3 A, up Bz Bs: son 2 putvar 2

son 1 uatom a putstructg/2
ustruct g/Z Ay A son 3 putatom a
son 1 uvar 3 putvar 3

uref 1 up B putstruct £/3
son 2 A

uvar 2 putref1  By:

Code size can grow quite considerably — for deep terms. In practice, though,
deep terms are “rare” :-)
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Then we translate:
codec ¥ = pushenvm // allocates space for locals
codeg g1 p
codeg gn p
popenv

The instruction popenv restores FP and PC and tries to pop the current stack
frame.

It should succeed whenever program execution will never return to this stack
frame :-)
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The instruction pushenvm sets the stack pointer:

pushenv m
m
l—‘ I] E l—‘l‘

SP=FP + m;
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33 Predicates

A predicate q/k is defined through a sequence of clauses rr =r1...7¢.

The translation of 4/k provides the translations of the individual clauses r;.

In particular, we have for  f=1

codeptr = g/k: codecn

If g/k is defined through several clauses, the first alternative must be tried.

On failure, the next alternative must be tried

—_ backtracking :-)
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Example

Consider the clause r:

a(X,Y) + (X, X1),a(X1, Y)

X1
Then codecr yields: T ‘r(]\

pushenv 3 mark A A:  markB B:  popenv
putref 1 putref 3
putvar 3 putref 2
call f/2 call a/2
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33.1 Backtracking

Whenever unifcation fails, we call the run-time function backtrack().

The goal is to roll back the whole computation to the (dynamically :-) latest
goal where another clause can be chosen —— the last backtrack point.

In order to undo intermediate variable bindings, we always have recorded
new bindings with the run-time function trail().

The run-time function trail() stores variables in the data-structure
trail:
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0 I

TP == Trail Pointer

points to the topmost occupied Trail cell
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A backtrack point is stack frame to which program execution possibly returns.

We need the code address for trying the next alternative (negative
continuation address);

e We save the old values of the registers HP, TP and BP.

e Note: The new BP will receive the value of the current FP'  :-)

For this purpose, we use the corresponding four organizational cells:

FP ———=| posCont. | 0

FPold |-1
HPold | -2
TPold |-3
BPold | -4

negCont. | -5
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The current stack frame where backtracking should return to is pointed at by the

extra register BP:

FP
BP
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