Script generated by TTT

Title: Seidl: Virtual_Machines (15.06.2015)
Date: Mon Jun 15 10:26:11 CEST 2015
Duration: 82:24 min

Pages: 42

app(X,Y,Z) « X=
? app(X,|Y.c|, [a,b,Z])

= [H‘Z]L app(X’, Y,Z’)

Remark

the atom empty list
(H|Z]
[a,b,Z]

binary constructor application
shorteut for: [a|[b|[Z]]]]]]

232

123

A program p is constructed as fo]lof

b= a|X| | f(l,... tn)

g = plt,... k)| X=t

c o= plXy, .., X) 8108
p o= Cl.....Cm?§

e A term t either is an atom, a variable, an anonymous variable or a
constructor application.

e A goal g either is a literal, i.e., a predicate call, or a unification.

e A clause c consists of a head p(Xj, ..., Xi) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

e A program consists of a sequence of clauses together with a single goal as
query.

A program p is constructed as follows:

~

i= @l X|_| fltyee)

g u= plh,... k)| X=t
i X gy
P i= C1.....Cm?8

e A term f either is an atom, a variable, an anonymous variable or a
constructor application.

e A goal g either is a literal, i.e., a predicate call, or a unification.

o A clause c consists of a head p(X;, ..., Xi) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

e A program consists of a sequence of clauses together with a single goal as
query.

A More Rcaliiil?xample
g

app([].Z, 2).
app([HIX], Y, [HIZ]) < — app(X,Y,2").
?— app(X,[Y,C],[a,b,Z]).

231

A program p is constructed as follows:

-~

i= @ | X|_| fltyeesta)

g = plh,....)| X=t
¢ = pXy.. X)) QL8
pou= Cle.... Cin

e A term t either is an atom, a variable, an anonymous variable or a
constructor application.

e A goal g either is a literal, i.e., a predicate call, or a unification.

e A clause ¢ consists of a head p(Xy, ..., Xi) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

e A program consists of a sequence of clauses together with a single goal as
query.

A More Realistic Example

app(X,Y,Z) + X=|[],Y=2
app(X,Y,Z) « X=[H|X', Z=[H|Z'], app(X", Y, Z’)
? app(X,[Y,c], [a,b, Z])

Remark
[= theatomempty list
[H|Z] == binary constructor application
[a,b,Z] == shortcut for: [a|[b|[Z|[]]]]
232

Procedural View of Proll programs:

literal = procedure call
predicate == procedure

clause —= definition

term = value

unification == basic computation step

binding of variables side effect

Note: Predicate calls ...
s ... donot have a return value.
e ... affect the caller through side effects only :-)

e ... may fail. Then the next definition is tried :-))
— backtracking

28 Architecture of the WiM:

The Code Store:

0 1 T D PC

C = Code store — contains WiM program;
every cell contains one instruction;
PC = Program Counter - points to the next instruction to executed;
235
The Heap:
n O [|

0 1 T [] mp

jas
1

Heap for dynamicly constructed terms;
HP

Heap-Pointer — points to the first free cell;
¢ The heap in maintained like a stack as well :-)

e A new-instruction allocates a object in H.

e Objects are tagged with their types (as in the MaMa) ...

237

The Runtime Stack:

s DEEEEEEEE
0 1 Sp
E‘ FP
S = Runtime Stack — every cell may contain a value or an address;
SP = Stack Pointer — points to the topmost occupied cell;
FP = Frame Pointer — points to the current stack frame.

Frames are created for predicate calls,

contain cells for each variable of the current clause

atom 1 cell

EI:'—» variable 1 cell

y o)
EDJ unbound variable 1 cell
— structure (n+1) cells
—
=
 —
S | f/n

29 Construction of Terms in the Heap

Parameter terms of goals (calls) are constructed in the heap before passing.

Assume that the address environment p returpsfor each clause variable X its
address (relative to FP) on the stack. Then codey t p phould ...

e construct (a presentation of) t in the heap; and

e return a reference to it on top of the stack.

Idea

e Construct the tree during a post-order traversal of ¢

e with one instruction for tE/ICIl ne\I/ngde ;/

Example t=flg(X

Assume that X is initialized, ie., S[FP +pX] contains already a reference,
Y and Z are not yet initialized.

239

Representing t=f(g(X,Y),aZ)

18 [

\
.

= R

—:—E‘j—» reference to X

240

29 Construction of Terms in the Heap

Parameter terms of goals (calls) are constructed in the heap before passing,.

Assume that the address environment p returns, for each clause variable X its
address (relative to FP) on the stack. Then codeyg tp should ...
e construct (a presentation of) t in the heap; and

e return a reference to it on top of the stack.

Idea

o Construct the tree during a post-order traversal of ¢

e with one instruction for each new node!

Example t=f(g(X,Y),aZ).

Assume that X is initialized, i.e., S[FP+ pX] contains already a reference,
Y and Z are not yet initialized.

239

For a distinction, we mark occurrences of already initialized variables through
over-lining (e.g. X).

Note: Arguments are always initialized!

Then we define:
codeqap = [putatoma codey f(t1,..., k) p = codestyp
codey Xp = [putvar (pX)
C(]dL‘A Xp = putref (QX) code . f.0
codeq _p = [putanon putstruct f/n

241

For a distinction, we mark occurrences of already initialized variables through
over-lining (e.g. X).

Note: Arguments are always initialized!

Then we define:
codeqap = putatoma codey f(h,...,bn)p = codeatyp
codes Xp = putvar(pX) .
codey Xp = puiref(pX) codey ty p
codes _p = putanon putstruct f/n

For f(g(X,Y),a,Z)and p= {X > 1,Y v 2, Z r 3} this results in the sequence:

putref 1 putatom a

putvar 2 putvar 3

putstruct g/2 putstruct £/3
242

The instruction putvari introduces a new unbound variable and
additionally initializes the corresponding cell in the stack frame:

D,
putvar i ‘b1
J

FP — > FP ——

SP =SP +1;
S[SP] = new (R, HP);
S[FP + i] = S[SP];

244

The instruction putatoma constructs an atom in the heap:

putatom a

SP++; S[SP] = new (A,a);

243

The instruction putanon introduces a new unbound variable but does not
store a reference to it in the stack frame:

putanon

R

SP =5P + 1;
S[SP] = new (R, HP);

(- =£09)

245

The instruction putrefi pushes the value of the variable onto the stack:

putref VAR
] —Q@ G%%O

SP=SP+1;
S[SP] = deref S[FP +iJ;

246

The instruction putstructf/n builds a constructor application in the heap:

| —
n putstruct f/n
I
L e [S]f/nl

v=new (S, f,n);
SP=SP-n+1;
for (i=1; i<=n; i++)

H[v +i] =S[SP +1i-1];
S[SP]=v;

248

The instruction putrefi pushes the value of the variable onto the stack:

utrefi N
g — F—®

FP —= FP —=—

SP=SP+1;
S[SP] = deref S[FP + iJ;

The auxiliary function deref contracts chains of references:

ref deref (ref v) {
if (H[v]l==(R,w) && v'!=w) return deref (w);
else return v;

247

Remarks

e The instruction putref i does not just push the reference from S[FP + i] onto
the stack, but also dereferences it as much as possible

—— maximal contraction of reference chains.

s In constructed terms, references always point to smaller heap addresses.

Also otherwise, this will be often the case. Sadly enough, it cannot be
guaranteed in general ~(

249

P&

30 The Translation of Literals

Idea
e Literals are treated as procedure calls.
e We first allocate a stack frame.
e Then we construct the actual parameters (in the heap)
e ... and store references to these into the stack frame.

e Finally, we jump to the code for the procedure /predicate.

250
codeg p(h,....5)p = mark B // allocates the stack frame
code,y f p
codey ty p
call p/k // calls the procedure p/k
B:
Example pla, X,g(X,Y)) with p={X—1Y~2}
We obtain:
mark B putref 1 callp/3
putatom a putvar 2 B:
putvar 1 putstruct g/2
252

codeg p(t1,-..,) p

mark // allocates the stack frame

codey t p

codey b p
call p/k // calls the procedure p/k

251
codeg p(t,...,H)p = mark B // allocates the stack frame
codey b p
codey ti p
callp/k // calls the procedure p/k
Example pla, X, g(X,Y)) with p={X— 1Y~ 2}
We obtain:
mark B putref 1 callp/3
putatom a putvar 2 B:
putvar 1 putstruct g/2

Stack Frame of the WiM:

SP —75 1

l_‘ l >

253

The instruction call p/n calls the n-ary predicate p :

callp/n
n
FP —>=
rcl] |

FP=SP-n;
PC=p/n;

local stack

local variables

6 org. cells

PC[pm]

The instruction mark B allocates a new stack frame:

| B |
mark B g:
SP =SP + 6;
S[SP] = B; S[SP-1] = FP;
255
The instruction mark B allocates a new stack frame:
[B]
mark B
SP=5P +6;

S[SP] = B; S[SP-1] = FP;

The instruction callp/n calls the n-ary predigca
31 Unification

ca
n
PCEl PC e By X, we denote an occurrence of X;

Convention
it will be translated differently depending on whether the variable is
initialized or not.

=SP-)
PC=p/n; e Weintroduce the macro put X p
putX p = putvar(pX)
put _p = putanon
putX p = putref (pX)
256

257

Let us translate the unification X =#. Let us translate the unification X =1+.

Ideal Ideal

e Push a reference to (the binding of) X onto the stack; e Push a reference to (the binding of) X onto the stack;

e Construct the term ¢ in the heap; e Construct the term t in the heap;

e Invent a new instruction implementing the unification :-) ¢ Invent a new instruction implementing the unification :-)

codeg (X=#p = putXp
codeq t p

unify

Example The instruction unify calls the run-time function unify() for the
topmost two references:

Consider the equation:

04 f(3(%.Y),a,2)
Then we obtain for an address environment unify
p={Xr—1Y—>2,Z—3 U4}

putref4 | putrefl putatom a unify unify (SISP-1], S[SP]);
putvar 2 putvar 3 SP = SP-2;
putstructg/2 putstruct /3
260 261

The Function unify() Example

e ... takes two heap addresses.

For each call, we guarantee that these are maximally de-referenced. Consider the equation:

. . u :f(R(X; Y),a,Z)
e ... checks whether the two addresses are already identical.

. Then we obtain for an address environment
If so, does nothing :-)

e ... binds younger variables (larger addresses) to older variables (smaller P={XPLY=2Z3 U4}

addresses);
e ... when binding a variable to a term, checks whether the variable occurs

insidethe term == occur-check; putref 4 putref 1 putatom a unify
e ... records newly created bindings; putvar 2 putvar 3
e ... may fail. Then backtracking is initiated. putstructg/2 putstruct £/3

262 260

The instruction unify calls the run-time function unify() for the
topmost two references:

EE@ i

unify (S[SP-1], S[SP]);
SP =SP-2;

261

The Function unify()

e ... takes two heap addresses.

For each call, we guarantee that these are maximally de-referenced.

e ... checks whether the two addresses are already identical.
If so, does nothing :-)

e ... binds younger variables (larger addresses) to older variables (smaller
addresses);

e ... when binding a variable to a term, checks whether the variable occurs
inside the tetm =——= occur-check;

e ... records newly created bindings;

e ... may fail. Then backtracking is initiated.

262

——
The Function unify()\(= f (y)

... takes two heap addresses.

For each call, we guarantee that these are maximally de-referenced.

... checks whether the two addresses are already identical.

If so, does nothing)

... binds younger variables (larger addresses) to older variables (smaller
addresses);

... when binding a variable to atems,.checks whether the variable occurs
inside the term —=

... tecords newly created bindings;

... may fail. Then backtracking is initiated.

262

