Script generated by TTT

Title: Seidl: Virtual_Machines (09.06.2015)
Date: Tue Jun 09 10:15:43 CEST 2015
Duration: 91:24 min

Pages: 26

r Go) (e &)
S el (G

Example

V-code for the body of the

\@nxy —

with CBN semantics:

atchx with[] > y|h=t > rt(hay)

Since the old stack frame is kept, return 2 will only be reached by the direct
jump at the end of the [J-alternative.

214

0 targ2 1 jump B 4 pushglob 0
0 pushloc0 5 eval

1 eval 2 A: | pushlocl 5 move 43

1 tlist A 3 pushloc 4 apply

0 pushloc1 4 cons sttt ——
1 eval 3 pushloc 1 1 B: return2

The code for alastcall I = (¢’ eg...e,_1) inside a function f with k arguments
must

1. allocate the arguments ¢; and evaluate ¢’ to a function (note: all this inside
f’s frame!);

2. deallocate the local variables and the k consumed arguments of f;

3. execute an apply.

codeylpsd = codecey_1 psd
codec ey—z p (sd+1)

codec ey p (sd+m—1)

codey ¢ p (sd + m) // Evaluation of the function
mover (n+ 1) // Deallocation of r cells
apply

where ¥ = sd + k is the number of stack cells to deallocate.

213

k)|
/
moverk

SP=SP-k-r;

for (i=1; i<k; i++)
S[SP+i] = S[SP+i+r];

SP=5P +k;

215

26 Exceptions

k
Example
moverk let rec ged = fun x y —
! ifx <0|| y < 0 then raise 0
elseif x = ythen x

— G elseif y < xthenged (x —y) y
else ged x (i — x)

SP=SP-k-1;
for (i=1; i<k; i++) intrygcd 05
S[SP+i] = S[SP+i+r]; X
SP:SP+](,' withz — z
For simplicity, we assume that all raised exception values are of any type.
215 216

For every try expression, we maintain: For an expression of the following form:

e An exception frame on the stack, which contains all relevant information to e=trye; withx — e
handle the exception;
e The exception pointer XP, which points the the current exception frame. we generate:
codeyepsd = tryA
Each exception frame must record codey ey p (sd +4)
restore B
e thenegative continuation address, i.e., the address of the code for the)
handler: A: codey e p' (sd+1)
’ slide 1
e the global pointer and
B:
e the frame pointer; as well as
e theold exception pointer. where p'=pa&{x— (L,sd+1)}.

217 218

FP
GpP
XP

FP
XP

S[SP+1]=XP;
S[SP+2] = GP;
S[SP+3]=FP;
S[SP+4] = A;
SP =5P+4;

«p= SP |

219

Now we have all provisions to raise exceptions.

For these, we do:

e We give up the current comutational context;
e We restore the context of the closest surrounding try expression;

e We hand over the exception value to the exception handler.

Thus, we translate:

codey (raise ¢) psd = codey e psd

raise

FP
GP
XP

PC=B;

XP = S[SP-4];
S[SP-4] = S[SP];
SP = SP-4;

220

a=S[SP];
SP = XP-3;
PC = S[XP];
FP = S[XP-1];
GP = S[XP-2];
XP = S[XP-3];
S[SP] = a;

Example

The V-code for ged is given by:

0 alloc 1 2 B rewrite 1 10 mkbasic
1 pushloc 0 1 try C 10 pushloc9
2 mkvec 1 5 mark D 11 apply
2 mkfun A 8 loadc 5 6 D: restoreE
2 jump B 9 mkbasic 2 C pushloc0
0 A targ2 9 loadc 0 3 slide 1

2 E: slidel

return 2
23
Remarks

e In Ocaml, exceptions may also be raised by the runtime system.

e Therefore, exceptions form a datatype on their own, which can be extended
with further constructors by the programmer.

e The handler performs pattern matching on the exception value.

e If the given exception value is not matched, the exception value is raised
again.

Caveat

Exceptions only make sense in CBV languages !!

Why??

Remarks

e In Ocaml, exceptions may also be raised by the runtime system.

e Therefore, exceptions form a datatype on their own, which can be extended
with further constructors by the programmer.

¢ The handler performs pattern matching on the exception value.

+ If the given exception value is not matched, the exception value is raised
again.

224

Remarks

e In Ocaml, exceptions may also be raised by the runtime system.

¢ Therefore, exceptions form a datatype on their own, which can be extended
with further constructors by the programmer.

e The handler performs pattern matching on the exception value.

e If the given exception value is not matched, the exception value is raised
again.

Caveat

Exceptions only make sense in CBV languages !!

Why??

27 The Language Proll

Here, we just consider the core language Proll (“Prolog-light” :-). In particular,

we omit:
The Translation of Logic + seithmetlc
» the cut operator;
Languages i
¢ self-modification of programs through assert and retract.
26 27
Example ... in Concrete Syntax:
bigger(X,Y) ¢ X = elephant,Y = horse biggerelephant, horse).
bigger (X, Y) ¢ X = horse, Y = donkey bigger (horse, donkey).
bigger(X,Y) + X = donkey,Y = dog bigger (donkey, dog).
bigger(X,Y) ¢ X = donkey,Y = monkey bigger (donkey, monkey). QC
is_bigger(X,Y) <+ bigger(X,Y) is_bigger(X, Y) =="bigger(X,Y).

is_bigger(X,Y) ¢ bigger(X,Z),is_bigger(Z,Y)
? is_bigger(elephant, dog)

bigger(X, Y
is_bigger(elephant,

bigger(X, Z)xjs_bigger(Z, }@

Example

bigger(X, Y) + | X = elephant, Y = horse
bigger(X,Y) X = horse, Y = donkey i
bigger(X, Y) +— X —=doukey, ¥ — dag !
bigger(X,Y) + | X = donkey,Y = monkey
is_bigger(X,Y) ¢ bigger(X,Y)

is_bigger(X,Y) <+ bigger(X,Z),is_bigger(Z,Y)
? is_bigger(elephant, dog)

A More Realistic

le
app([], ff

app([H|X'], Y. [H\Z’ =\ app(X,Y.Z").
?— app(X,|Y.c|,[ab, Z]).

app(X Y, Z) =
app(X,Y, Z) «

? app(X, [Y,c], [a,5, Z])

230
A More Realistic Example
app(X,Y,Z) |l X=[LY=
app(X,Y,Z) || X = [HX], Z = [H|Z)] bep(x, ¥, 2/)
?| app(X, [Y,c], [a,B,Z])
230

A More Realistic Example

app(X,Y,Z) «+ X=][],Y=2
app(X,Y,Z) « X=[H|X'|, Z=[H|Z'], app(X, Y, Z")
? app(X, [Y, C], [a, b,ZD

Remark Eﬁ (@'Sj

(]

[H|Z] == binary constructor application
[a,b,Z] == shortcut for: [a|[b|[Z][]]]]

¢ Xt
ailel 2T

the atom empty list

232

A More Realistic Example

app(X,Y,Z) « X=[],Y=Z
app(X,Y,Z) « X=[H|X], Z=[H|Z'], app(X, Y, Z)
? app(X,[Y,c], [a,b,Z])

Remark
[= theatom empty list
[H|Z]
[a,b,Z]

binary constructor application
shorteut for: [a|[b|[Z][]]]]

232

A More Realistic Example

app([]. Z, Z).
app([H|X'], Y, [H|Z']) :—

?—

app(X, [Yr C], [ur b, Z])

app(X, Y, Z').

231

