Script generated by TTT

Title: Seidl: Virtual_Machines (08.06.2015)
Date: Mon Jun 08 10:15:57 CEST 2015
Duration: 89:51 min

Pages: 26

Example leta=17inlet f=funb —a+bin f 42

Disentanglement of the jumps produces:

0 loadc17 2 markB 3 B slide 2 1
1 mkbasic 5 loadc42 1 halt 2
1 pushloc0 6 mkbasic 0 A targl 2
2 mkvecl 6 pushlocd 0 pushglob0 2
2 mkfunval A 7 eval 1 eval 1

apply 1 getbasic 1

195

pushloc 1
eval
getbasic
add
mkbasic

return 1

24 Structured Data

In the following, we extend our functional programming language by some
datatypes.

241 Tuples

Constructors: (.,...,.), k-ary with k > 0;
Destructors: #j for j € Ny (Projections)

We extend the syntax of expressions correspondingly:

e == ... | (eo,....e1) | #je

| let (xq,...,x_1) =e1in e

24 Structured Data

In the following, we extend our functional programming language by some
datatypes.

G
24.1 Tuples

Constructors: (,...,.), k-ary with k > 0;
Destructors: #;j for j € Ng (Projections)
We extend the syntax of expressions correspondingly:

e == ...| (eo,...,ex1) | #je

| let (J&...,xk_l) =e ine

196

e In order to construct a tuple, we collect sequence of references on the stack. e In order to construct a tuple, we collect sequence of references on the stack.
Then we construct a vector of these references in the heap using mkvec Then we construct a vector of these references in the heap using mkvec

e For returning components we use an indexed access into the tuple. ¢ For returning components we use an indexed access into the tuple.

codey (eq,...,e,1) psd = codeceypsd codey (ep,...,e.1) psd = codefley psd
codec ey p (sd +1) codf] e1 p (sd +1)
codec eg_q1 p (sd+k—1) coder e p (sd +k—1)
mkvec k mkvec k

codey (#je) psd = codeyepsd codey (#je) psd = codeyepsd
get] get]
eval eval

In the case of CBV, we directly compute the values of the e;. In the case of CBV, we directly compute the values of the ¢;.
197 197

Inversion: Accessing all components of a tuple simulataneously:

e=1let (yo,..., Y1) = €1 ineg

Vig Vig

| ‘ This is translated as follows:

get]

|| —— codeyepsd = codeye psd

getvec k
codey ¢y p' (sd+k)
slide k

where p'=p@{yi— (Lsd+i+1)]|i=0,....,k—1}.

else Error “Vector index out of bounds!”; The instruction getveck pushes the components of a vector of length k onto
else Error “Vector expected!”; the stack:

198 199

Inversion: Accessing all components of a tuple simulataneously:
e=let (Yo,..., ¥ 1) =e1ineg

This is translated as follows:

codeyepsd = codeye psd
getveck
codey ey o' (sd+k)
slide k
where p' =p@ {yi— (Lsd+i+1)|i=0,...,k—1}

The instruction getveck pushes the components of a vector of length k onto
the stack:

Inversion: Accessing all components of a tuple simulataneously:
e=1let (Yo,.-., Y1) = €1 ineg

This is translated as follows:

codey E‘Ba'd = codey e; psd
getveck
codey eg|p’
slide k

sd + k)|

where o' =lo® {yi— (Lsd+i+1)|i=0,...,k—1}.

The instruction getveck pushes the components of a vector of length k onto
the stack:

(VIk[L. T T T] VIk[L T T T]

getvec k

if (S[SP] == (Vk)) {
S -

for(i=0; i<k; i++) {
SP++; S[SP] = v[i];

]
| else Error “Vector expected!”;

200

24.2 Lists

Lists are constructed by the constructors:
M “Nil”, the empty list;

o “Cons”, right-associative, takes an element and a list.
Access to list components is possible by match-expressions ...
Example The append function app:

app = funly — match [with
I - v
h=zt — hu(appty)

201

accordingly, we extend the syntax of expressions:

e = ...| [| (ex:zed)

| (match ey with[] — &1 | bt — &)

Additionally, we need new heap objects:

% empty list
!

s[01 s[1]

non—-empty list

202

I cons ||
| o= |~ !

S[SP-1] = new (L,Cons, S[SP-1], S[SF]);
5P--;

205

24.3 Building Lists

The new instructions nil and cons are introduced for building list nodes.

We translate for CBN:

codey [] psd =

codey (epe) psd =

Note:
e« With CBN: Closures are constructed for the arguments of “::";
e With CBV: Arguments of “::” are evaluated :-)

208

244 Pattern Matching £ L

Consider the expression ¢ = match ey with [| — ¢; |

Evaluation of e requires:

e evaluation of ep;
¢ check, whether resulting value v is an L-object;
e if v is the empty list, evaluation of e; ...

o otherwise storing the two references of v on the stack and evaluation of e,.
This corresponds to binding /1 and ¢ to the two components of v.

206

In consequence, we obtain (for CBN as for CBV):

codeyepsd = codey e p sd
tlist A
codey ey psd
jump B
A: codeye p (sd+2)
slide 2

where p' =p& {hws (L,sd+1),t — (L,sd+2)}.

The new instruction tlist A «loes the necessary checks and (in the case of
Cons) allocates two new local variables:

207

... else |
S[SP+1] = S[SP]—s[1];
S[SP] = S[SP]—s[0];
SP++; PC = A;

209

den

h = S[SP];
if (H[h] !=(L,...)

Error “no list!”;

if (H[h] == (_Nil)) SP--;

208

Example The (disentangled) body of the function app with
app — (G,0):

0 targ 2 3 pushglob 0 0 C markD
0 pushloc 0 4 pushloc 2 3 pushglob 2
1 eval 5 pushloc 6 4 pushglob 1
1 tlist A 6 mkvec 3 5 pushglob 0
0 pushloc 1 4 mkclos C 6 eval
1 eval 4 cons 6 apply
1 jump B 3 slide 2 1 D: update
2 A: pushloc1 1 B: return2

Note:

Datatypes with more than two constructors need a generalization of the tlist
instruction, corresponding to a switch-instruction :-)

210

242 Lists

Lists are constructed by the constructors:
[1 “Nil”, the empty list;

T “Cons”, right-associative, takes an element and a list.
Access to list components is possible by match-expressions ...
Example The append function app:

app = fun!y — match [with

I -y
| h=t — h

201

Example The (disentangled) body of the function app with

app — (G,0):
0 targ 2 3 pushglob 0 0
0 pushloc 0 4 pushloc 2 3
1 5 pushloc 6 -
1 | tlist A | 6 mkvec 3 5
0 pushloc 1 4 mkclos C 6
1 eval 4 cons 6
1 jump B 3 slide 2 1
2 pushloc 1 1 B return2

Note:

mark D
pushglob 2
pushglob 1
pushglob 0
eval

apply
update

Datatypes with more than two constructors need a generalization of the tlist

instruction, corresponding to a switch-instruction :-)

210

242 Lists

Lists are constructed by the constructors:
1 “Nil”, the empty list;

oyt “Cons”, right-associative, takes an element and a list.
Access to list components is possible by match-expressions ...
Example The append function app:

app = funly — match/with
0 -y
| hzt — hu(apptuy)

201

245 Closures of Tuples and Lists

The general schema for codec can be optimized for tuples and lists:

codec (ep,...,e,-1) psd = codey (eq,...,e-1)psd = |codeceqpsd
codec e p (sd+1)

codec ex_1 p (sd +k—1)

mkvec k

codec [| psd codey [] psd = nil

codec ey p sd
codec ez p (sd+1)

codec (e1::ez) psd codey (e zez2) psd

cons

211

24,5 Closures of Tuples and Lists

The general schema for codec can be optimized for tuples and lists:

codec (o, ..., ex—1) psd = codey (e,e-1) psd = codeceppsd
codec ey p (sd+1)

codec g1 p(sd +k—1)

mkvec k
codec [] psd = codey [| psd = nil
codec (e1::ez) psd = codey (e;:e2) psd = codec ey psd
codec ez p (sd+1)
cons
211

The code for alastcalll = (¢' ¢g...ey,-1) inside a function f with k arguments
must

1. allocate the arguments e; and evaluate ¢’ to a function (note: all this inside
f's frame!);

2. deallocate the local variables and the k consumed arguments of f;

3. execute an apply.

7z

codeylpsd = codecey_1psd
codec eya p (sd +1)

codec ey p (sd +m —1)

codey € p (sd + m) // Evaluation of the function
mover (m+1) // Deallocation of r cells
apply

where r = sd + k is the number of stack cells to deallocate.

213

25 Last Calls

A function application is called last call in an expression ¢ if this application
could deliver the value fore.

A function definition is called tail recursive if all recursive calls are last calls.

Examples

rt (h:y)isalastcallin match x with [| = y|hat —rit(h:y)
f(x—1)isnotalastcallin ifx <1thenlelsexxf (x—1)

Observation: Last calls in a function body need no new stack frame!

Automatic transformation of tail recursion into loops!!!

212

