Script generated by TTT

Title: Seidl: Virtual_Machines (20.04.2015)
Date: Mon Apr 20 10:16:15 CEST 2015
Duration: 90:39 min

Pages: 27

Variables are associated with memory cells in S:

Z:
y:
X

p delivers for each variable x the relative address of x.

pis called Address Environment.

Variables can be used in two different ways:

Example x=y+1
We are interested in the value of y, but in the address of x.

The syntactic position determines, whether the L-value or the R-value of a
variable is required.

L-value of x = address of x

R-value of x = content of x

codeg e p | produces code to compute the R-value of ¢ in the
address environment p

codep e p | analogously for the L-value

Note:

Not every expression has an L-value (Ex.: x +1).

We define:
codeg (61 +e2) p = codepeyp
codeg ez p
add
... analogously for the other binary operators
codeg (—e€) p = codegep
neg
... analogously for the other unary operators
codegr g p = loadcq
coder x p = loadc (px)

codegxp = codeLxp
load

The instruction load loads the contents of the cell, whose address is on top of
the stack.

]
] loed]
)

S[SP] = S[S[SP]];

24

codegr (x =¢)p = coderep (!

G e @)

store writes the contents of the second topmost stack cell into the cell, whose
address in on top of the stack, and leaves the written value on top of the stack.

Note: this differs from the code generated by gec 77

store -

S[S[SP]] = S[SP-1];
SP-;

1

Example Codefor e=x=y-1 withp={x—>4,y— 7}
codeg e p produces:

loadc 7 loadc 1 loadc 4
load sub store

Improvements:

Introduction of special instructions for frequently used instruction sequences,

eg., .
/

storeaq } =

26

3 Statements and Statement Sequences

Is e anexpression, then e; isastatement.

Statements do not deliver a value. The contents of the SP before and after the
execution of the generated code must therefore be the same.
<)
>

codee; p = coderep

pop

The instruction pop eliminates the top element of the stack.
pop

| i |

SP--;

27

The code for a statement sequence is the concatenation of the code for the
statements of the sequence:

= codesp
essp

code e p = // empty sequence of instructions

3 Statements and Statement Sequences

Is ¢ anexpression, then e; isa statement

Statements do not deliver a value. The contents of the SP before and after the
execution of the generated code must therefore be the same.

codee; p. = coderep

Pop

The instruction pop eliminates the top element of the stack.

— N

SP--;

27

The code for a statement sequence is the concatenation of the code for the
statements of the sequence:

code (sss) p = codesp
code ss p
code € p = / empty sequence of instructions

4 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:

Q - jump A Q
.

PC PC
PC=A;

29

4 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:

| Bl |

PC PC
PC=A;

29

jumpz A

e

O

=
3 O

PC

jumpz A

=
3 [

=
CHE

PC
if (S[SP] == 0) PC = A;
SP--;

For ease of comprehension, we use symbolic jump targets. They will later be
replaced by absolute addresses.

Instead of absolute code addresses, one could generate relative addresses, i.e.,
relative to the actual PC.

Advantages:
e smaller addresses suffice most of the time;

e the code becomes relocatable, i.e., can be moved around in memory.

31

For ease of comprehension, we use symbolic jump targets. They will later be
replaced by absolute addresses.

Instead of absolute code addresses, one could gener@e.,
relative to the actual PC.

Advantages:
e smaller addresses suffice most of the time;

o the code becomes relocatable, i.e., can be moved around in memory.

31

0SS
o =l o

=C

jumpz A
] ﬂ
PC PC

if (S[SP] == 0) PC = A;
SP--;

For ease of comprehension, we use symbolic jump targets. They will later be
replaced by absolute addresses.

Instead of absolute code addresses, one could generate relative addresses, i.e.,
relative to the actual PC.

o smaller addresses suffice most of the time;

becomesirelocatable, ., can be moved around in memory.

31

4.1 One-sided Conditional Statement
Let us firstregard s = if (e) s'.

Idea:
e Put code for the evaluation of ¢ and s’ consecutively in the code store,

e Inserta conditional jump (jump on zero) in between.

32

codesp = «codegrep COdeR_{cire
o T
code ' p » fdf ,
C e 8
A 1
XY 2 (/'

33

Example Be p={x—4,y—7} and

4.2 Two-sided Conditional Statement s = if(x>y) (1)
X=x—1; (if)
Let us now regard s = if (¢) s else s,. The same strategy yields: elsey=y—x; (i)

code s p produces:

codesp = codegep codeg fore
¢ fumpz N loada 4 loada 4 A: Jloada7
a loada 7 loada 7 loada 4
efors
b / jumpz A storea 4 storea 7
code fors S m o
jump B B:
o0 P jump
(@) (i) (#11)
34 35
Example Be p={a n—)b — 8, ¢ le}l and s the statement:
4.3 while-Loops '
while (@ >0) {c=c+1;a=a—b;}
Let us regard the loop s =|while (e) s’. We generate:
codesp produces the sequence:
codesp = codeg fore = A: | loada 7 | | loada 9 loada 7 B:
A codegep jumpz . loadc 0 loadc 1 | loada 8
jumpz B code for s’ | 8T I add | sub |
code s’ p jumpz B storea 9 | storea 7
; jumy L
jump A ! F.’ . | pop | pop I
B: jump A

37

Example Be p={a—7b—8,c—9} ands the statement:
while (¢ >0) {e=c+1;a=a—-b;}

code s p produces the sequence:

A: loada?7 loada 9 loada 7 B:
loadc 0 loadc 1 loada 8
gr add sub
jumpz B storea 9 storea 7
pop pop
jump A
37

4.4 for-Loops

The for-loop s = for (e1;e2;e3) 8’ is equivalent to the statement sequence
e1; while (ey) {5’ es; } - provided that s’ contains no continue-statement.
We therefore translate:

codesp = «codege;p

pop
A: coderexp

jumpz B
codes' p
codeg e3 p
pop
jump A

4.4 for-Loops

The for-loop s = for (e);e2;e3) s' is equivalent to the statement sequence
e1; while (e2) {s’ es; } — provided that s’ contains no continue-statement.
We therefore translate:

codesp = «coderep
pop
A: coderesp
jumpz B
code s’ p

—

codeg e3 p

Pop
jump A

4,5 The switch-Statement

Idea:
e Multi-target branching in constant time!

¢ Use a jump table, which contains at its i-th position the jump to the
beginning of the i-th alternative.

e Realized by indexed jumps.

i =
A [Q
PC

PC
PC =B + S[SP];
SP-;

39

