Script generated by TTT

The instruction next activates the next executable thread:
incontrastto yield the current thread is not inserted into RO .

Title: Seidl: Virtual_Machines (26.06.2013) RQ RQ
CT [}, B 1] o p 1 N I
Date: Wed Jun 26 16:03:20 CEST 2013 SP[5] sp [39] |
o next TN
| _ ¥ 7] ¥ (21
Duration: 87:05 min . o
/| "
_ LY —
Pages: 48 Yl e "
[| 2]

411

Therefore, we translate:

code exit (¢); p = codegep The instruction next activates the next executable thread:
exit incontrastto yield the current thread is not inserted into ROQ.
term
next
The instruction term is explained later :-) C
SP
The instruction exit successively pops all stack frames: next PC
FP
result = S[SP];
while (FP #-1) {
SP = FP-2; 4
FP = S[FP-1];
)

S[SP] = result;

409 411

If the queue RO is empty, we additionally terminate the whole program:

if (0 > ¢t = dequeue(RQ)) halt;

51 Waiting for Termination

Occationally, a thread may only continue with its execution, if some other thread
has terminated. For that, we have the expression join (¢) where we assume
that e evaluates to a thread id tid.

else { o If the thread with the given tid is already terminated, we return its return
save (); value.
CT=ct;
. o Ifitis not yet terminated, we interrupt the current thread execution.
restore ();
} o We insert the current thread into the queue of treads already waiting for the
termination.
We save the current registers and switch to the next executable thread.
o Thread waiting for termination are maintained in the table JTab.
o There, we also store the return values of threads :-)
412 413
Example:
: Thus, we translate:
JTab 0 codeg join (¢) p = codegep
join
| J
(2133
2 ... where the instruction join is defined by:

Thread 0 is running, thread 1 could run, threads 2 and 3 wait for the termination
of 1, and thread 4 waits for the termination of 3.

414

tid = S[SP];

if (TTab[tid][1] > 0) {
enqueue (JTab[tid][1], CT);
next

415

... accordingly:

5P =[5
!

S[SP] = JTab[tid][0];

P [—~{1Z

finalize

w

Thus, we translate:

codeg join (¢) p = codegep
join
finalize

... where the instruction join is defined by:

tid = S[SP];

if (TTab[tid][1] = 0) {
enqueue (JTab[tid][1], CT);
next

416 415
. Thus, we translate:
... accordingly:
. codeg join (e = codegr
SP [SP [codeg join (¢) p ::‘l:: ep
(o
l I finalize
] finalize [—]

w

S[SP] = JTab[tid][0];

416

... where the instruction join is defined by:

tid = S[SP];
if (TTab[tid][1] = 0) {
enqueue (JTab[tid][1], CT);

next

415

The instruction sequence:

.. accordingly: term
next
SP [F={5] SP [}—=42] is executed before a thread is terminated.

Therefore, we store them at the location f.

i

5

= The instruction next switches to the next executable thread. Before that,
though,

finalize

o ... the last stack frame must be popped and the result be stored in the table
JTab at offset 0;

w
[S2)

o ... the thread must be marked as terminated, e.g., by additionally setting the
PCto —1;

SP] = i ;
S[SP] = JTab[tid][0]; e ... all threads must be notified which have waited for the termination.

For the instruction term this means:

416 417

52 Mutual Exclusion

A mutex is an (abstract) datatype (in the heap W;w; should allow the
programmer to dedicate exclusive access to a shared resource (mutual

FP

exclusion).

The datatype supports the following operations:

exit
Mutex = newMutex (); — creates a new mutex;
void lock (Mutex xme); — tries to acquire the mutex;
void unlock (Mutex xme); — releases the mutex;

Warning;:

A thread is only allowed to release a mutex if it has owned it beforehand :-)

419 410

PC
JTab[CT][0] = S[SP];

freeStack(SP);
while (0 < tid = dequeue (JTab[CT][1]))
enqueue (RQ, tid);

The run-time function freeStack (int adr) removes the (one-element) stack at
the location adr:

freeStack (adr)
“

418

The instruction sequence:

term
nex

is executed before a thread is terminated.
Therefore, we store them at the location f.

The instruction next switches to the next executable thread. Before that,
though,

o ... the last stack frame must be popped and the result be stored in the table
JTab at offset 0;

o ... the thread must be marked as terminated, e.g., by additionally setting the
PCto —1;

e ... all threads must be notified which have waited for the termination.

For the instruction term this means:

417

PC=-1;

JTab[CT][0] = S[SP];

freeStack(SP);

while (0 < tid = dequeue (JTab[CT][1]))
enqueue (RQ, tid);

The run-time function freeStack (int adr) removes the (one-element) stack at
the location adr:

freeStack(adr)
=

418

52 Mutual Exclusion

A mutex is an (abstract) datatype (in the heap) which should allow the
programmer to dedicate exclusive access to a shared resource (mutual

exclusion).

The datatype supports the following operations:

Mutex * newMutex (); — creates a new mutex;
void lock (Mutex *me); ~ — tries to acquire the mutex;
void unlock (Mutex *me); — releases the mutex;

Warning;:

A thread is only allowed to release a mutex if it has owned it beforehand :-)

419

A mutex me

consists of:

e the tid of the current owner (or —1 if there is no one);

o the queue

BQ of blocked threads which want to acquire the mutex.

420

BQ

owner

Then we translate:

codeg newMutex () p = newMutex

where:

newMutex

421

Then we translate:

where:

CT

code lock (e); p w

lock

422

(oK

If the mutex is already owned by someone, the current thread is interrupted:

CT [17] CT []

lock

if (S[S[SP]] < 0) S[S[SP--]] = CT;

else {
enqueue @);
next;

423

Accordingly, we translate:

code unlock (e); p =

where:

unlock

424

codeg e p

unlock

CT [5]

Accordingly, we translate:

code unlock (e); p =

where:

unlock

424

codeg e p

unlock

CT

If the queue BQ is empty, we release the mutex:

unlock

if (S[S[SP]] # CT) Error (“Ilegal unlock!”);

if (0 > tid = dequeue (S[SP]+1))

else {
S[S[SP--I]

enqueue (RQ, tid);

S[S[SP--]] =1;

If the queue BQ is empty, we release the mutex:

unlock

if (SS[SP]] # CT) Error (“Illegal unlock!”);

if (0 > tid = dequeue (S[SP]+1))

else {
@——11 ~tid;
enguéue (RQ, tid);

S[S[SP--]] = -1;

If the queue BQ is empty, we release the mutex:

CT 5] CT 5]

unlock

if (S[S[SP]] # CT) Error (“Illegal unlock!”);
if (0 > tid = dequeue (S[SP]+1)) S[S[SP--]] =-1;
else {

S[S[SP--]] = tid;

enqueue (RQ, tid);

53 Waiting for Better Weather

It may happen that a thread owns a mutex but must wait until some extra
condition is true.

Then we want the thread to remain in-active until it is told otherwise.

For that, we use condition variables. A condition variable consists of a queue
WQ of waiting threads :-)

0 E WwQ

426

For condition variables, we introduce the functions:

CondVar * newCondVar (); — creates a new condition variable;
void wait (CondVar c%Mutex * me); — enqueues the current thread;
void signal (CondVar * cv); — re-animates one waiting thread;
void broadcast (CondVar # cv); — re-animates all waiting threads.

427

Then we translate:

codep newCondVar () p = newCondVar

where:

newCondVar

428

After enqueuing the current thread, we release the mutex. After re-animation,

After enqueuing the current thread, we release the mutex. After re-animation,
though, we must acquire the mutex again.

though, we must acquire the mutex again.

Therefore, we translate: Therefore, we translate:

code wait (eg,e1); p = codege p code wait [c’0,®; p = codegeyp
codeg eg p coder e p
® Q wait wait
dup dup
unlock unlock
next next
lock lock
where ... where ...
429 429

After enqueuing the current thread, we release the mutex. After re-animation,
though, we must acquire the mutex again.

Therefore, we translate:

5 .
code wait (e, e1); p = codegeyp

wait codeg g p

wait

Q)

unlock

next
if (S[S[SP-1]] # CT) Error (“Illegal wait!”);
enqueue (S[SP], CT); SP--; lock

where ...

430 429

After enqueuing the current thread, we release the mutex. After re-animation,
though, we must acquire the mutex again.

ct

w

Therefore, we translate:

code wait (eg,e1); p = codegeyp

wait

coder e p

if (S[S[SP-1]] # CT) Error (“Illegal wait!”);
enqueue (S[SP], CT); SP--;

where ...

430 429

Accordingly, we translate

signal

CT CT

(331

wail

signal
if (S[S[SP-1]] # CT) Error (“Illegal wait!”);
enqueue (S[SP], CT); SP--; if (0 < tid = dequeue (S[SP]))
enqueue (RQ, tid);

SP—;

430 431

Analogously:

code broadcast (e); p = codegep

broadcast

where the instruction broadcast enqueues all threads from the queue WQ
into the ready-queue RQ

while (0 < tid = dequeue (S[SP]))
enqueue (RQ, tid);
SP—;

Warning;:

The re-animated threads are not blocked !!!

When they become running, though, they first have to acquire their mutex :-)

432

54 Example: Semaphores

A semaphore is an abstract datatype which controls the access of a bounded
number of (identical) resources.

Operations:
Sema * newSema (intn) — creates a new semaphore;
void Up (Sema # s) — increases the number of free resources;
void Down (Sema * s) — decreases the number of available resources.

433

Therefore, a semaphore consists of:
e acounter of type int;
e amutex for synchronizing the semaphore operations;

e acondition variable.

typedef struct {
Mutex * me;
CondVar * cv;
int count;
} Sema;

434

Sema * newSema (int n) {
Sema * s;
s = (Sema %) malloc (sizeof (Sema));
s—me = newMutex ();
s—cv = newCondVar ();
s—count = n;
return (s);

435

Sema * newSema (int n) {
Sema * s;
5 = (Sema %) malloc (sizeof (Sema));
s—me = newMutex ();
s—cv = newCondVar ();
s—rcount = n;
return (s);

435

The translation of the body amounts to:

alloc 1 newMutex newCondVar
loadc 3 loadr 1 loadr 1
new store loadc 1
storer 1 pop add
pop store
pOp
436

loadr -3
loadr 1

loadc 2

add

store

p Op

loadr 1
storer -3

return

The translation of the body amounts to:

alloc 1
loadc 3
new

storer 1

pop

newMutex newCondVar loadr -3
loadr 1 loadr 1 loadr 1
store loadc 1 loadc 2
pop add add
store store
pop pop
136

Therefore, a semaphore consists of:

e acounter of type int;

e amutex for synchronizing the semaphore operations;

e acondition variable.
loadr 1
storer -3
return typedef struct {
Mutex * me;
CondVar * cv;
int count;
} Sema;

434

The translation of the body amounts to:

alloc 1 newMutex newCondVar loadr -3 loadr 1
loadc 3 loadr 1 loadr 1 loadr 1 storer -3
new store loadc 1 loadc 2 return
storer 1 pop add add
pop store store

pop pop

436

