Script generated by TTT Idea (cont.):

e The fields of a sub-class are appended to the corresponding fields of the
super-class :-)
Title: Seidl: Virtual_Machines (12.06.2013) Example
xample:
class mylist : list {

Date: Wed Jun 12 16:05:23 CEST 2013

int morelnfo;

Duration: 83:59 min

... results in:

Pages: 42 info

next

last

morelnfo

[dea (cont.):

39 Object Layout

o The fields of a sub-class are appended to the corresponding fields of the
super-class :-)

[dea:
- 7 - ity CPR, - F— ~lasg 11 i
¢ Only attributes and virtual member functions are stored inside the class !! Exam p]t‘:
o The addresses of non-virtual or static member functions as well as of . .
o class mylist = list {
constructors can be resolved at compile-time :-)
. . . int morelnfo;
s The fields of a sub-class are appended to the corresponding fields of the
super-class ... }
... results in:
... in our Example: info
info next
next last
N morelnfo
last

Forevery class C we assume that we are given an adress environment pc .

pc maps every identifier x visible inside C toits decorated relative
address a . We distingish:

global variable (G, a)
local variable (L,a)
attribute (A,a)
virtual function (V,b)
non-virtual function | (N,a)
static function (S,a)

For virtual functions x, we do not store the starting address of the code — but
the relative address b of the field of x inside the object :-)

For the various of variables, we obtain for the L-values:

codep, x p

loadr —3

loadca

loadgga
loadr § “'FS

loadca

add

if

if

if

if

x = this

px=(G,a)
px=(L,a)
px=(Ana)

In particular, the pointer to the current object has relative address -3

Accordingly, we introduce the abbreviated operations:

loadr —3

loadm q
loadc q
add

load

storem q loadr —3
loadc q

add

store

w
@
[

For the various of variables, we obtain for the L-values:

codep x p

loadr —3

loadc a

loadra

loadr 1
loadc a

add

if

if

if

if

x = this

px=(G,a)
px=(La)
px=(Aa)

In particular, the pointer to the current object has relative address -3

Accordingly, we introduce the abbreviated operations:

loadm q

storem q

w
&

[

loadr —3 &
loadc q :'..

add «&-_.
load C:-..
loadr —3 é—‘

loadeq T

add &
store e

Discussion:

Besides storing the current object pointer inside the stack frame, we could
have additionally used a specific register COP :-)

This register must updated before calls to non-static member functions and
restored after the call.

We have refrained from doing so since

— Only some functions are member functions :-)

— We want to reuse as much of the C-machine as possible :-))

Accordingly, we introduce the abbreviated operations:

loadm q

storem q

w

@
[

loadr -3
loadc q
add

load

loadr —3
loadc q
add

store

Discussion:

Besides storing the current object pointer inside the stack frame, we could
have additionally used a specific register COP :-)

This register must updated before calls to non-static member functions and
restored after the call.

We have refrained from doing so since

— Only some functions are member functions :-)

— We want to reuse as much of the C-machine as possible :-))

40 Calling Member Functions

Static member functions are considered as ordinary functions :-)

For non-static member functions, we distinguish two forms of calls:

(1) directly: flea....eq)

(2) relative toan object: e1.f (e,....en)

[dea:

e The case (1) is considered as an abbreviation of this.f (es,...,e,)

s Theobjectis passedto f asanimplicit first argument :-)

e If f isnon-virtual, proceed as with an ordinary call of a function

e If f isvirtual, insertanindirectcall :-)

w
&
o

=)

=)

A non-virtual function:
codeg ey.f (ez,...,e,) p = codeg e, p

codeg e p

coder ey p & M

mark %
loadc _f
call
slide m

where (F,_f) = pc(f)

C=classof e

m = space for the actual parameters

Note:
The pointer to the object is obtained by computing the L-value of e :-)

366

A virtual function:

coder e1.f (e2,...,ex) p = codegre,p

codeg ez p
coder e p
mark

loads 2

loadc b
add ; load

call

slide m
where (V,b) = pc(f)

C=classof ¢

m = space for the actual parameters

codeg ey.f (ez,...,e,) p = codeg e, p

codeg €3 p
coder e1 p

mark

loadc _f

call

slide m

where (F,_f) = pc(f)
C=classof ¢

m = space for the actual parameters

Note:

The pointer to the object is obtained by computing the L-value of ¢ :-)

366

codeg ey.f (e2,...,ey) o0 = codere, p

codeg ez p
coder. e1 p
mark
loads 2
loadc b
add ; load
call
slide m
where (V,b) = pc(f)

C=classof e

m = space for the actual parameters

coder e1.f (ez,..

where

ey) p = codeg ey, p

codeg €3 p
coder, e1 p
mark
loads 2
loadc b
add ; load
call

slide m

(V,b) = pc (f)

C=classof ¢

m = space for the actual parameters

The instruction loadsj loads relative to the stack pointer:

j 1 I loads j

42

S[SP+1] = S[SP—jl:
SP++;

... in the Example:

The recursive call
next — last ()

in the body of the virtual method

(= herd). Gonk ()

last is translated into:

loadm 1

mark

loads 2
loadec 2

add
load

call

369

... in the Example:

The recursive call
next — last ()

in the body of the virtual method last is translated into:

41 Defining Member Functions

In general, a definition of a member function for class C looks as follows:

d bof(taxa, ..ty x,) { s8]
loadm 1
mark
loads 2 Idea:
loadc 2
add e [istreated like an ordinary function with one extra implicit argument
load e Inside f apointer this to the current object hagrelative address -3
call)
o Object-local data must be addressed relative to this ...
369 370
codep d p = _f: enterq // Setting the EP codep d p = _f: enterq // Setting the EP
allocm // Allocating the local variables allocm // Allocating the local variables

code ss py

return // Leaving the function
where q = maxS+m where
maxS = maximal depth of the local stack
m = space for the local variables
k = space for the formal parameters (including this)
01 = local address environment

code ss o1

return /| Leaving the function
where g = maxS+m where
maxS = maximal depth of the local stack
m = space for the local variables
k = space for the formal parameters (including this)
m = local address environment

... in the Example:

_last: enter 6 loadm 0 loads 2
alloc 0 storer -3 loadc 2
loadm 1 return add
loadc 0 load
eq A: lloadm1 call
jumpz A mark storer -3

return

42 Calling Constructors

Every new object should be initialized by (perhaps implicitly) calling a
constructor. We distinguish two forms of object creations:
(1) directly: x = Ceg... en);

(2) indirectly: new C (ez,...,en)

Idea for (2):
e Allocate space for the object and return a pointer to it on the stack;

o Initialize the fields for virtual functions;

o DPass the object pointer as first parameter to a call to the constructor;

e Proceed as with an ordinary call of a (non-virtual) member function

o Unboxed objects are considered later ...

W(" [Cj
codegr new C [(’2,...,0,,3{) = -

initVirtual C

codeg e, p

codeg ez p

loads relative to SPP :-)

mark
loade C

call
popm+1
where m = space for the actual parameters.
Note:
Before calling the constructor, we initialize all fields of virtual functions.

The pointer to the object is copied into the frame by a new instruction :-)

Assume that the class C lists theyirtual functions fy,..., f, for
0

the offsets and initial addresses: { and g , respectively:

Then:

initVirtual C = dup
loadc by ; add

loadcﬁ ; store

POP’
dup
loadc b, ; add

loadiﬁ; store

pop

C

with

43 Defining Constructors
In general, a definition of a constructor for class C looks as follows:

d = C(taxg... bty x,) {ss}

[dea:

s Treat the constructor as a definition of an ordinary member function :-)

... in the Example:

list: enter 3 loada 1 loadc 0
alloc 0 loadc 1 storem 1
loadr -4 add pop

storem 0 storea 1 return

Pep pop

Discussion:

The constructor may issue further constructors for attributes if desired :-)

The constructor may call a constructor of the super class B as first action:

code B (ey...,en); p = codegeyp

codeg e; p
loadr — 3
mark
loadc _B
call

popm+1

where m = space for the actual parameters.

Thus, the constructor is applied to the current object of the calling constructor
=)

codeg C (eq,...,e,) p = stalloc|C|

44 Initializing Unboxed Objects nitVirtual ©

codeg e, p

Problem: codeg ez p
The same constructor application can be used for initializing several variables: loads m +1
mark
x=x1=C(es...,e) loadc _C
call
popm+1
[dea: .) ‘)
where m = space for the actual parameters.
¢ Allocate sufficient space for a temporary copy of a new C object. Note:
¢ Initialize the temporary copy. The instruction stallocm islike malloc m but allocates on the stack
e Assign this value to the variables to be intialized :-) We assume that we have assignments between complex types :-)
380 381

codep C (eg,...,e,) p = stalloc|C|
initVirtual C
codeg e, p

stalloc m codeg ez p

m loadsm +1

mark

m

loade C
call
popm +a__

where m = space for the actual parameters.

SP = SP+m+1;
S[SP] = SP-m;

Note:
The instruction stallocm is like mallocm but allocates on the stack

We assume that we have assignments between complex types :-)

382 381

m

codeg C (eq,...,e,) p = stalloc|C|
initVirtual C

codeg e, p

codeg ez p

stalloc m
m] loads m + 1
mark
e loadc _C
call
SP = SP+m+1; popm+1
S[SP] = SP-m; where m = space for the actual parameters.
Note:

The instruction stallocm is like mallocm but allocates on the stack :-)

We assume that we have assignments between complex types :-)

382

4%@

)

Threads -

Fin¥

/1(\/[

Threads

