Script generated by TTT

Title:

Date:

Duration:

Pages:

[dea:

Seidl: Virtual_Machines (11.06.2013)
Tue Jun 11 14:02:23 CEST 2013
88:29 min

46

* Introduce separate try chains for every possible constructor.

o Inspect the root node of the first argument.

¢ Depending on the result, perform an indexed jump to the appropriate try
chain.

Assume that the predicate p/k is defined by the sequence rr of clauses ry ... 7y,

Let tchains rr

constructors occurring in unifications X1 = t.

Example: The app-predicate:
app(X,Y,Z) « X=[LY=2Z
app(X,Y,Z) « X=[H|X'], Z=[H|Z, app(X", Y. Z")

o If the root constructor is [], only the first clause is applicable.
o If the root constructor is [|], only the second clause is applicable.
» Every other root constructor should fail !!

o Only if the first argument equals an unbound variable, both alternatives
must be tried ;-)

denote the sequence of try chains as built up for the root

Example:

Consider again the app-predicate, and assume that the code for the two clauses
start at addresses A; and A,, respectively.

Then we obtain the following four try chains:

VAR: setbtp // variables NIL: jump Ay atom [|
try As
delbtp CONS: jump A, constructor [|]
jump Az
ELSE: fail default

Then we generate for a predicate p/k:

codeprr = putref 1
getNode // extracts the root label

index p/k // jumps to the try block

tchains rr
A codec rq
Ay : codec

The instruction getNode returns “R” if the pointer on top of the stack points
to an unbound variable. Otherwise, it returns the content of the heap object:

getNode

getNode

_ £ I
[F=R[T- ‘R

switch (H[S[SP]]) {

case (S, f/n): S|SP] = f/n: break;
case (A,a): S[SP] = a; break;
case (R,_) : S[SP] =R;

The instruction index p/k performs an indexed jump to the appropriate try
chain:

index p/k
PC

PC = map (p/k,S[SP]);
SP-—;

’

=
)
&

The instruction index p/k performs an indexed jump to the appropriate try
chain:

index p/k
PC

PC = map (p/k,S[SP]);

= ’

The function map() returns, for a given predicate and node content, the start
address of the appropriate try chain :-)

It typically is defined through some hash table :-))

326

The instruction index p/k performs an indexed jump to the appropriate try

chain:

index p/k
pC

PC = map (p/k,S[SP]);
SP-—;

The function map() returns, for a given predicate and node content, the start

address of the appropriate try chain :-)
It typically is defined through some hash table :-))

37 Extension: The Cut Operator
Realistic Prolog additionally provides an operator “!” (cut) which explicitly
allows to prune the search space of backtracking.

Example:

branch(X,Y) « p(X)Hm(X,Y)
branch(X,Y) + qu(X,Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the
left-hand side ...

=

37 Extension: The Cut Operator

g

Realistic Prolog additionally provides an operator “!” (cut) which explicitly

allows to prune the search space of backtracking.

Example:

branch(X,Y) + p(X),Laqi(X,Y)
branch(X,Y) « q(X,Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the
left-hand side ...

=
=
]

The Basic Idea:

o We restore the oldBP from our current stack frame;

* We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.

328

37 Extension: The Cut Operator

pyer

Realistic Prolog additionally provides an operator “!” (cut) which explicitly

allows to prune the search space of backtracking.

Example:

branch(X,Y) « p(X),Laq(X,Y)
branch(X,Y) + q(X,Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the
left-hand side ...

The Basic Idea:
o We restore the oldBP from our current stack frame;
o We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.

The Basic Idea:
o We restore the oldBP from our current stack frame;
* We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.

Example:

Consider our example:

branch(X,Y) « p(X),Lai(X)Y)
branch(X,Y) + qu(X,Y)

We obtain:
setbtp A: pushenv2 C: prune lastmark B:
try A mark C pushenv2 putref 1
delbtp putref 1 putref 2

jump B call p/1 lastcall q1/2 2

329

pushenv 2
putref 2
putref 2
move 2 2

jump q2/2

Example:

Consider our example:

branch(X,Y) + p(X),Lqi(X,Y)
branch(X,Y) « q(X,Y)

In fact, an optimized translation even yields here:

setbtp A: pushenv2 C:
try A mark C
delbtp putref 1
jump B callp/1

prune

pushenv 2

putref 1
putref 2

move 22

jump g1 /2

pushenv 2
putref 1
putref 2
move 2 2

jump qa/2

The new instruction prune

FP —=

[(]

simply restores the backtrack pointer:

prune
HP
TP
BP
BP = BPold;

FP —=

=

Problem:

If a clause is single, then (at least so far ;-) we have not stored the old BI” inside

the stack frame :-(

For the cut to work also with single-clause predicates or try chains of length 1,
setcut before the clausal code (or the jump):

we insert an extra instruction

The new instruction prune

FP —=

()]

simply restores the backtrack pointer:

prune
HP

TP
BP

BP = BPold;

FP —=

=

The instruction setcut just stores the current value of BI:

Problem:
FP—>{ P
If a clause is single, then (at least so far ;-) we have not stored the old BP inside] 1
the stack frame :-(] |
— setcut —
= HP == HP —
TP L TP L
BP BP
For the cut to work also with single-clause predicates or try chains of length 1,]]
we insert an extra instruction setcut before the clausal code (or the jump): E E
BPold = BP;
332 333
The Final Example: Negation by Failure The Final Example: Negation by Failure
The predicate notP should succeed whenever p fails (and vice versa :-) The predicate notP should succeed whenever p fails (and vice versa :-)
notP(X) + | p(X)], fail notP(X) <+ p(X),!, fail
| notP(X) notP(X)
where the goal fail never succeeds. Then we obtain for notP : where the goal fail never succeeds. Then we obtain for notP :

A: pushenvl C: prune B: pushenv 1 setbtp A: pushenvl C: prune B: pushenv 1

try A mark C pushenv 1 popenv try A mark C pushenv 1 popenv
delbtp putref 1 fail delbtp putref 1 fail
jump B callp/1 popenv jump B call p/1 popenv

Operation of a stop-and-copy-Collector:

. e Division of the heap into two parts, the to-space and the from-space —
38 Garbage Collection _ P ILa two parts, P F
which, after each collection flip their roles.
} o Allocation with new in the current from-space.
e Both during execution of a MaMa- as well as a WiM-programs, it may
happen that some objects can no longer be reached through references. * In case of memory exhaustion, call of the collector.

e Obviously, they cannot affect the further program execution. Therefore,

these objects are called garbage. The Phases of the Collection:

o Their storage space should be freed and reused for the creation of other

objects.
1. Marking of all reachable objects in the from-space.
Warning;: 2. Copying of all marked objects into the to-space.
The WiM provides some kind of heap de-allocation. This, however, only frees 3. Correction of references.

the storage of failed alternatives !!!
8 4. Exchange of from-space and to-space.

335 336
(1) Mark: Detection of live objects: (1) Mark: Detection of live objects:
o all references in the stack point to live objects; all references in the stack point to live objects;
» every reference of a live object points to a live object. » every reference of a live object points to a live object.
Graph Reachability Graph Reachability

(2) Copy: Copying of all live objects from the current from-space into the
current to-space. This means for every detected object:

+ Copying the object;

e Storing a forward reference to the new place at the old place :-)

all references of the copied objects point to the forward references in the
from-space.

;
L

(3) Traversing of the to-space in order to correct the references.

[
=
o

L

Warning;:

The garbage collection of the WiM must harmonize with backtracking.

This means:

o The relative position of heap objects must not change during copying :-!!
o The heap references in the trail must be updated to the new positions.

o If heap objects are collected which have been created before the last
backtrack point, then also the heap pointers in the stack must be updated.

Classes and Objects

Example:

int count =0;

class list {
int info;
class list * next;
list (intx) {
info = x; count++4; next = null;
}
virtual int last () {
if (next == null) return info;
else return next — last ();
}
b

[
@

Discussion:

We adopt the C++ perspective on classes and objects.

We extend our implementation of C. In particular ...

Classes are considered as extensions of structs. They may comprise:

= attributes, i.e., data fields;
constructors;

= member functions which either are virtual, i.e., are called depending
on the run-time type or non-virtual, i.e., called according to the static
type of an object :-)

= static member functions which are like ordinary functions :-))

We ignore visibility restrictions such as public, protected or private but
simply assume general visibility.

We ignore multiple inheritance :-)

39 Object Layout

[dea:

¢ Only attributes and virtual member functions are stored inside the class !!

e The addresses of non-virtual or static member functions as well as of
constructors can be resolved at compile-time :-)

s The fields of a sub-class are appended to the corresponding fields of the
super-class ...

... in our Example:

info

next

last

39 Object Layout

Idea:

Only attributes and virtual member functions are stored inside the class !!

The addresses of non-virtual or static member functions as well as of
constructors can be resolved at compile-time :-)

The fields of a sub-class are appended to the corresponding fields of the
super-class ...

. in our Example:

info

next

last

39 Object Layout

[dea:

¢ Only attributes and virtual member functions are stored inside the class !!

¢ The addresses of non-virtual or static member functions as well as of
constructors can be resolved at compile-time :-)

o The fields of a sub-class are appended to the corresponding fields of the
super-class ...

... in our Example:

info

next

last

[
@
o

Idea (cont.):

e The fields of a sub-class are appended to the corresponding fields of the
super-class :-)

Example:

class mylist : list {

int morelnfo;

... results in:

info

next

last

morelnfo

[dea (cont.):

o The fields of a sub-class are appended to the corresponding fields of the
super-class :-)

Example:

class mylist : list {

int morelnfo;

... results in:

info

next

last

morelnfo

