Script generated by TTT

Title: Seidl: Virtual_Machines (22.05.2013)
Date: Wed May 22 16:00:38 CEST 2013
Duration: 90:44 min

Pages: 34

The code for a last call | = (e’ ¢g ... ey,) inside a function f with k arguments
must -

1. allocate the arguments ¢; and evaluate ¢’ to a function (note: all this inside
f's frame!);

2. deallocate the local variables and the k consumed arguments of f;

3. execute an apply.

codey f,ﬁ@ = codec ey_1 psd

codec ey_2 p (sd +1)

codecegp (sd+m—1)

ey e’ p (sd+m) // Evaluation of the function
mover (m+1) // Deallocation of r cells
apply

where r = sd + k is the number of stack cells to deallocate.

213

25 Last Calls

A function application is called last call in an expression e if this application
could deliver the value for e.

A last call usually is the outermost application of a defining expression.

A function definition is called tail recursive if all recursive calls are last calls.
Examples:

rt (h:y)isalastcall in matchx with [| — y |h=t —rt(h:y)
f(x—1)isnotalastcallin ifx <1thenlelsexxf (x—1)

Observation: Last calls in a function body need no new stack frame!

Automatic transformation of tail recursion into loops!!!

212

The code for a last call l = (¢’ ¢g ... ey,) inside a function f with k arguments
must

1. allocate the arguments ¢; and evaluate ¢’ to a function (note: all this inside
f’s frame!);

2. deallocate the local variables and the k consumed arguments of f;

3. execute an apply.

codeylpsd = codecey 1psd

codec ey_2 p (sd +1)

codecegp (sd+m—1)

codey ¢’ p (sd + m) // Evaluation of the function
mover (m-+1) / / Deallocation of r cells
apply

where r = sd + k is the number of stack cells to deallocate.

213

g - gf‘ '_)) (6} O)/ y H (L/ 'O’l)) The code foralast calll = (¢’ eg ... e,) inside a function f with k arguments
b&)'_)(L/-/o S must

1. allocate the arguments ¢; and evaluate ¢’ to a function (note: all this inside
f’s frame!);

Example:

The body of the function
o 2. deallocate the local variables and the k consumed arguments of f;
r=funxy — matchxwith[] =y |h=t —rt(hzy)

0 targ2 1 jum@ - pushglob 0

eval

move 43 codey 1: codec ep—1 p sd

3. execute an apply.

0 pushloc0

1 eval 2 A: pushlocl

1 tlistA 3 pushloc 4 apply codec ey p (sd +1)

0 pushloc1 4 cons slide 2

1 eval 3 pushloc 1 return 2 codec e p (sd +m—1)

codey ¢’ p (sd +m) // Evaluation of the function
Since the old stack frame is kept, return 2 will only be reached by the direct mover (m+1) / / Deallocation of r cells
jump at the end of the []-alternative. apply
where r = sd + k}a the number of stack cells to deallocate.
— (M)
214 213
Example:
The body of the function L Kk
r=funxy — matchxwith[] =y |h=t —rt(hzy) LL
. move rk

0 targ2 1 jump B 1 pushglob 0 .

0 pushloc0 5 eval

1 eval 2 A: pushlocl 5 move 43 B |

1 tlistA 3 pushloc 4 apply —%

0 pushloc 1 4 cons - SP=SP-k-r1;

1 eval 3 pushloc 1 for (i=1; i<k; i++)

S[SP+i] = S[SP+i+1];
SP=SP +k;

Since the old stack frame is kept, return 2 will only be reached by the direct
jump at the end of the []-alternative.

move rk

SP=SP-k-r1;
for (i=1; i<k; i++)
S[SP+i] = S[SP+i+r];

The Translation of Logic
Languages

SP=SP +k;
215 216
Example:

26 The Language Proll
bigger(X,Y) + X =elephant,Y = horse ,
bigger(X,Y) — X =horse, Y = donkey ,

Here, we just consider the core language Proll (“Prolog-light” :-). In particular, bigger(X, Y) — X =donkey,Y =dog ,

we omit: bigger(X,Y) — X =donkey,Y = monkey |

o arithmetic; is_bigger(X,Y) <+ bigger(X,Y).

» the cut operator;

¢ self-modification of programs through assert and retract.

T

is_bigger(X,Y) <+ bigger(X,Z),is_bigger(Z,Y) .
e is_bigger(elephant, dog)

A More Realistic Example:

Example:
\ 7 app(X,Y,Z) « X=[]Y=2
X \>/, bigger(X,Y) +— X = elephant,Y = horse app(X,Y,Z) « X =[H|X'], Z=[H|Z], app(X', Y, Z")
bigger(X,Y) — X = horse, Y = donkey ? app(X,[Y,c], [a, b Z])
bigger(X,Y) +— X =donkey,Y = dog 'I\ 1\ ’(\
bigger(X,Y) +— X = donkey, Y = monkey
is_bigger(X,Y) +

bigger(X,Y) x;—- O
is_bigger(X,Y) <« bigger(X,Z),is_bigger(Z,Y)

? is_bigger(elephant, dog) \/ = g

A program p is constructed as follows:

/? s= alX || flt,....t)
¢ u= L) | X =t

A More Realistic Example:

app(X,Y,2) « X=[l,Y=2 g == plh

app(X,Y,Z) « X=[HX, Z=[H|Z], app(X,Y,Z) ¢ #= P X) < gie g
il s

? app(X, [Y.c], [a, b, Z]) poes fetig

o A term t either is an atom, a variable, an anonymous variable or a
constructor application.
Remark:
e A goal g either is a literal, i.e., a predicate call, or a unification.
[] —— the atom empty list
[H|Z]
[a,b,7]

‘ o o A clause ¢ consists of a head p(Xj, ..., X;) with predicate name and list of
binary constructor application

shortcut for: [a|[b|[Z][]]]]

formal parameters together with a body, i.e., a sequence of goals.

e A program consists of a sequence of clauses together with a single goal as
query.

A More Realistic Example:

app(X,V,Z) « X=[LY=2Z
app(X,Y,Z) + X=[H[X], Z=[H|Z], app(X", Y, Z")
? app(X,[Y,c],[a b 2Z])

A program p is constructed as follows:

bou= a|X | _|f(t,...,t)
g u= plt,... k)| X=t

X, X)) — 8l 8

e A term t either is an atom, a variable, an anonymous variable or a
constructor application.
Remark:

* A goal g either is a literal, i.e., a predicate call, or a unification.

[= the atom empty list

)) e A clause ¢ consists of a head p(Xj, ..., X;) with predicate name and list of

H|Z] == binary constructor application . .

¢ / formal parameters together with a body, i.e., a sequence of goals.

[a,b,7] == shortcutfor: [a|[b|[Z|[]]]]
e A program consists of a sequence of clauses together with a single goal as

query.
220 221
(\(\/>-_ Q)S(><>
/
e ——— A program p is constructed as follows:
—
R —
A More Realistic Example:
ton= alX|_|f(t....t)
[}

app(X,Y,Z) « X=][], ¥Y=Z
app(X,Y,Z) + X=[H|X'], Z=[H|Z'], app(X",Y,Z’)
7 app(X,[Y.c], [a b, Z])

Remark:

[] —— the atom empty list
[H|Z] == binary constructor application
[a,b,7] == shortcutfor: [a|[b|[Z|[]]]]

\(:CL)\/:— QD(\%

g = plt... b)) | X=1t
. pXt, . X)) — 8 8

p == c1ft..cm?g

A term t either is an atom, a variable, an anonymous variable or a
constructor application.

A goal g either is a literal, i.e., a predicate call, or a unification.

A clause ¢ consists of a head p(Xj, . .., X)) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

A program consists of a sequence of clauses together with a single goal as
query.

Procedural View of Proll programs:

goal == procedure call
predicate —— procedure
clause == definition
term — value
unification == basic computation step
binding of variables —— side effect

Note: Predicate calls ...

e ... do not have a return value.
o ... affect the caller through side effects only

e ... may fail. Then the next definition is tried

-)

=)

A program p is constructed as follows:

bou= a|X | _|f(t,...,t)
g u= plt,... k)| X=t

c u= p(Xl,---:Xk)
) /‘1/}}’?

A term t either is an atom, a variable, an anonymous variable or a
constructor application.

A goal g either is a literal, i.e., a predicate call, or a unification.

A clause ¢ consists of a head p(Xj, ..., X;) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

A program consists of a sequence of clauses together with a single goal as
query.

—— backtracking
222 221
Procedural View of Proll programs: A program p is constructed as follows:
@qu‘@, —— procedure call
predicate = procedure ton= alX|_|f(t....t)
clause —— definition g u= pltn.. b)) | X=t
term — wvalue c u= pXy..LXe) 8L,
unification —— basic computation step p ou= 1. .c,,,&i
binding of variables == side effect
o A term t either is an atom, a variable, an anonymous variable or a
constructor application.
Note: Predicate calls

e ... do not have a return value.
o ... affect the caller through side effects only

o ... may fail. Then the next definition is tried

—— backtracking

A goal g either is a literal, i.e., a predicate call, or a unification.

A clause ¢ consists of a head p(Xj, . .., X)) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

A program consists of a sequence of clauses together with a single goal as
query.

Procedural View of Proll programs:

goal == procedure call
predicate —— procedure

clause = definition

term = value

unification == basic computation step

binding of variables side effect

Note: Predicate calls ...
e ... do not have a return value.
o ... affect the caller through side effects only :-)

e ... may fail. Then the next definition is tried :-))

—— backtracking

A More Realistic Example:

app(X,Y,Z) « X=[l Y=z
app(X,Y,Z) « X=[H|X], Z=[H|Z', app(X"Y,Z")
? app(X,[Y,c], [a, b Z])

Remark:
the atom empty list
[H|Z]

la, b, Z]

binary constructor application
shortcut for: [a|[b|[Z|[]]]]

220

Procedural View of Proll programs:

goal —— procedure call
predicate == procedure
clause —— definition
term — value
unification —— basic computation step
binding of variables == side effect

Note: Predicate calls ...

e ... do not have a return value.
o ... affect the caller through side effects only :-)

o ... may fail. Then the next definition is tried :-))

—— backtracking

A More Realistic Example:

app(X,Y,Z) « X=[lLY=2 m

app(X,Y,Z) « X= H|X] Z= [H\Z,apr’YZ)

2 app(X, [Y,c] [a,b,Z ?\/T\ P

Remark:
[] —— the atom empty list
[HZ]
la, b, Z]

binary constructor application
shortcut for: [a|[b|[Z|[]]]]

Procedural View of Proll programs:

e Ae Wrag

goal == procedure call
predicate — procedure 27 Architecture of the
clause == definition
term — value - -
The Code Store:
unification == basic computation step
binding of variables —— side effect
¢ L [|
0 1 1 D PC
Note: Predicate calls ...
e ... do not have a return value.
o ... affect the caller through side effects only) c = Codestore - contains WiM program;
every cell contains one instruction;
e ... may fail. Then the next definition is tried :-)) e e
backtrackin PC = Program Counter — points to the next instruction to executed;
— acktracking
222 223
' 3 The Heap:
The Runtime Stack: b
s T T1T 11T 11 LT [|
0 1 Sp 0 1 1 D HP
FP
H = Heap for dynamicly constructed terms;
S = Runtime Stack - every cell may contain a value or an address; HP = Heap-Pointer —points to the first free cell;
SP = Stack Pointer — points to the topmost occupied cell;
FP = Frame Pointer - points to the current stack frame. o The heap in maintained like a stack as well =)

Frames are created for predicate calls,

contain cells for each variable of the current clause

* A new-instruction allocates a object in H.

o Obijects are tagged with their types (as in the MaMa) ...

=
>
G

atom 1 cell
- variable 1 cell

unbound variable I cell
R structure (n+1) cells
I
 —
| —
S| f/n
226

S| fn

atom

variable

unbound variable

structure

226

1 cell

1 cell

1 cell

(n+1) cells

28 Construction of Terms in the Heap

Parameter terms of goals (calls) are constructed in the heap before passing.
Assume that the address environment p returns, for each clause variable X its
address (relative to FP) on the stack. Then codey t p should ...

e construct (a presentation of) t in the heap; and

e return a reference to it on top of the stack.
Idea:

o Construct the tree during a post-order traversal of ¢

e with one instruction for each new node!

Example: t=f(g(X,Y),a,2).
Assume that X is initialized, ie.,, S[FP+pX] contains already a reference,
Y and Z are not yet initialized.

