Script generated by TTT e R

Title: Seidl: Virtual_M achines (14052013) e The optimization will cause Global Vectors to contain more components

than just references to the free the variables that occur in one expression ...

Date: Tue May 14 14:05:34 CEST 2013
Disadvantage: Superfluous components in Global Vectors prevent the
deallocation of already useless heap objects == Space Leaks :-(

Duration: 86:50 min

Potential Remedy: Deletion of references at the end of their life time.

Pages: 43

Basic Values:

The construction of a closure for the value is at least as expensive as the
construction of the B-object itself!

22 Optimizations II: Closures Therefore:
codecbpsd = codeybpsd = loadch
mkbasic

In some cases, the construction of closures can be avoided, namely for

o Basic values,

o Variables, g fa 1 This replaces:

e Functions.) — mkvec 0 jump B mkbasic B:

mkclos A A: loadcb update

178 179

Variables:

Variables are either bound to values or to C-objects. Constructing another

closure is therefore superfluous. Therefore:

This replaces:
getvar x psd
mkvec 1

Example:
produces:

codecxpsd =

mkclos A
jump B

getvar x p sd

A:

pushglob 0

eval

e=letreca=bandb=7ina.

B:

codey e @ 0

update

The execution of this instruction sequence should deliver the basic value 7 ...

0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval

3 slide2

180 181

0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval 2 pushloc0 2 loadc? 3 rewrite] 3 eval

3 slide2 3 slide2

loadc 7 pushloc 1
—C| -1] -1 —= B 7

[F={c]-1]

185

188

0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1

2 pushloc0 2 loadc? 3 rewritel 3 eval 2 pushloc0 2 loadc?7 3 rewritel 3 eval
3 slide2 3 slide2
eval
Segmentation Fault !!
—=C| -1] -1
— B 7
| F=c]-1]
189 190
Variables:
- o o - shloc -
0 alloc2 5 rewrite2 3 mkbasic 2 pushlocl Variables are either bound to values or to C-objects. Constructing another
2 pushlocO 2 loade? 3 rewritel 3 eval closure is therefore superfluous. Therefore:
3 slide2
codecxpsd = getvarxpsd
This replaces:
pushloc 1 getvar x psd mkclos A A: pushglob 0 update
) mkvec 1 jump B eval B:
Example: e=letreca=bandb=7ina. codey e () 0
3 B 7 produces:
’—’—> C|-11]-1 0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
e 2 pushloc0 2 loadc?7 3 rewritel 3 eval
3 slide2

188 180

The execution of this instruction sequence should deliver the basic value 7 ...

0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc?7 3 rewritel 3 eval

3 slide 2

Segmengati ault !!

181 190
0 alloc2 3 rewrite 2 3 mkbasic pushloc 1 0 alloc2 3 rewrite 2 3 mbkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel eval 2 pushloc0 2 loadc?7 3 rewritel 3 eval
slide 2 3 slide2
alloc 2 eval
— C| -1]-1
—= B 7
182

189

0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval
3 slide2
mkbasic

186

0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc?7 3 rewritel 3 eval
3 slide2

loade 7

185

Functions:
Functions are values, which are not evaluated further. Instead of generating
code that constructs a closure for an F-object, we generate code that constructs

the F-object directly.

Therefore:

codec (fun xg...x_1 —¢) psd = codey (funxg...x1 —¢) psd

192

Functions:
Functions are values, which are not evaluated further. Instead of generating
code that constructs a closure for an F-object, we generate code that constructs

the F-object directly.

Therefore:

codec (fun xg...xx1 —e) psd = codey (funxg...xx1 —€) psd

192

23 The Translation of a Program Expression

Execution of a program e starts with
PC=0 SP=FP=GP=-1
The expression ¢ must not contain free variables.

The value of ¢ should be determined and thena halt instruction should be

23 The Translation of a Program Expression

Execution of a program e starts with
PC=0 SP=FP=GP=-1

The expression ¢ must not contain free variables.

The value of e should be determined and thena halt instruction should be

executed. executed.
codee = codeyef0 codee = codeyef0
halt halt
193 193
Remarks:
o The code schemata as defined so far producqd Spaghetti code. Example: leta=17inlet f =funb — a+bin f 42

® Reason: Code for function bodies and closures placed directly behind the
instructions mkfunval resp. mkclos with a jump over this code.

o Alternative: Place this code somewhere else, e.g. following the
halt-instruction:

Advantage: Elimination of the direct jumps following mkfunval and
mkclos.

Disadvantage: The code schemata are more complex as they would have to
accumulate the code pieces in a Code-Dump.

Solution:

Disentangle the Spaghetti code in a subsequent optimization phase :-)

194

Disentanglement of the jumps produces:

0 loadc17 2 mark B 3 B slide 2
1 mbkbasic 5 loadc42 1 halt
1 pushloc0 6 mkbasic 0 A targl
2 mkvecl 6 pushloc 4 0 pushglob 0
2 mkfunval eval eval
apply getbasic

195

[R I -

[

pushloc 1
eval
getbasic
add
mkbasic

return 1

24 Structured Data

In the following, we extend our functional programming language by some
datatypes.

241 Tuples

Constructors: (., ...,.), k-ary withk > 0;
Destructors: #jfor j € Ny (Projections)
We extend the syntax of expressions correspondingly:

e = ... | (e,....em1) | #Hje

| let (xq,...,x,_1) =e1ineg

196

o In order to construct a tuple, we collect sequence of references on the stack.
Then we construct a vector of these references in the heap using mkvec

e For returning components we use an indexed access into the tuple.

codey (eg,...,6_1) psd = codeceypsd

codec ey p (sd+1)

codec g1 p (sd+k—1)

mkveck

codey e p sd

get]
eval

codey (#je) psd

In the case of CBV, we directly compute the values of the e;.

197

Vig | Vig
- getj
]]

if (S[SP] == (V,gv))
S[SP] = v[jI;
else Error “Vector expected!”;

198

Inversion: Accessing all components of a tuple simulataneously:

e=let (yo,..., y—1) =e1inep
n

-

This is translated as follows: /r

codey (’@d = codey ey psd
getveck
codey ed p'j(sd + k)
slide k

where p'=p&{y;— (L,sd+i+1)|i=0,...,k—1}.

The instruction getveck pushes the components of a vector of length k onto
the stack:

199

accordingly, we extend the syntax of expressions:

242 Lists
e == ... || (e1::e2)
Lists are constructed by the constructors: | (matcheywith[| ey | h:ut — e2)
[J “Nil”, the empty list;
ety “Cons”, right-associative, takes an element and a list.
Additionally, we need new heap objects:

empty list

Access to list components is possible by match-expressions ...

Example: The append function app:
app = fun!y— match/with s[0] s[1]
i T | L | Cons ‘ | ‘ non—-empty list
hzt — hu(appty) ¢ ¢
201 202
24.3 Building Lists
The new instructions nil and cons are introduced for building list nodes.
We translate for CBN: nil

nil

codey [] p sd

codey (e1::e2) psd = codecep psd - -
codec ez p (sd +1)
SP++; S[SP] = new (L,Nil);
cons
Note:
o With CBN: Closures are constructed for the arguments of “:”;

e With CBV: Arguments of “:” are evaluated :-)

24.3 Building Lists

The new instructions nil and cons are introduced for building list nodes.

We translate for CBN:

codey [] psd nil

codey (eg::e2) psd codec e p sd
codec ez p (sd +1)

cons

Note:
o With CBN: Closures are constructed for the arguments of “:";

o With CBV: Arguments of “:” are evaluated :-)

[L[Cons[T]

- cons]
- |

S[SP-1] = new (L,Cons, S[SP-1], S[SP]);
SP- -;

24.3 Building Lists

The new instructions nil and cons are introduced for building list nodes.

We translate for CBN:

codey [] p sd nil
codey (e1::e2) psd = Co(th p sd ¢
CO(’{V‘Q p(sd+1)

cons

Note:
o With CBN: Closures are constructed for the arguments of “:”;

o With CBV: Arguments of “{ are evaluated :-)

244 Pattern Matching

Consider the expression ¢ = matchep with [| = e1 [t — e

Evaluation of e requires:
e evaluation of ep;
o check, whether resulting value v is an L-object;
o if v is the empty list, evaluation of e1 ...

o otherwise storing the two references of v on the stack and evaluation of e,.
This corresponds to binding h and ¢ to the two components of v.

In consequence, we obtain (for CBN as for CBV):

codeyepsd = codey eg p sd
tlist A
codey e1 p sd
jump B
A: codeyep’ (sd+2)

slide 2

where p'=p&{h— (L,sd+1),t— (L,sd+2)}.

The new instruction tlist A does the necessary checks and (in the case of
Cons) allocates two new local variables:

tlist A

h =S[SP];
if (H[h] !=(L,...)
Error “no list!”;
if (H[h] == (_,Nil)) SP- -;

208

In consequence, we obtain (for CBN as for CBV):

codeyepsd = codey ep p sd
tlist A
codey ey p sd
jump B
A: codey e p' (sd+2)

slide 2

where p'=p@{h— (L,sd+1),t+— (L,sd+2)}.

The new instruction tlist A does the necessary checks and (in the case of
Cons) allocates two new local variables:

-

... else |

}

S[SP+1] = S[SP]—s][1];
S[SP] = S[SP]—s[0];
SP++; PC=A;

Example: The (disentangled) body of the function app with
app — (G,0):

0 targ 2 3 pushglob 0 0l C markD
0 pushloc 0 1 pushloc 2 3 pushglob 2
1 eval 5 pushloc 6 1 pushglob 1
1 tlist A 6 mkvec 3 5 pushglob 0
0 pushloc 1 1 mkelos C 6 eval
1 eval - cons 6 apply
1 jump B 3 slide 2 1| D: update
2 A: pushlocl 1 B: return2

Note:

Datatypes with more than two constructors need a generalization of the tlist
instruction, corresponding to a switch-instruction :-)

210

24.5 Closures of Tuples and Lists

The general schema for codec can be optimized for tuples and lists:

codec (eq,...,e_1) psd = codey (eq,...,e_1) psd codec eg p sd

codeceq p (sd+1)

codec g1 p(sd+k—1)
mkvec k

codec [| p sd = codey [] psd = nil

codec (e1 : e2) p sd = codey (e1:¢e) psd = codec ey psd
codec ey p (sd+1)

cons

211

24.5 Closures of Tuples and Lists

The general schema for codec can be optimized for tuples and lists:

codec (eo, ..., 1) psd = codey (ep,...,e_1)psd = codeceppsd

codec ey p (sd+1)

codec ex_1 p (sd+k—1)

mkveck
codec [] psd = codey [] psd = nil
codec (e1: e2) p sd = codey (e1:e2) psd = codec ey psd

codec ey p (sd+1)

cons

211

25 Last Calls

A function application is called last call in an expression e if this application
could deliver the value for e.

A last call usually is the outermost application of a defining expression.

A function definition is called tail recursive if all recursive calls are last calls.
Examples:

rt(h:y)isalastcall in matchx with [| =y |hat —rt(h:zy)
f(x—1)isnotalastcallin ifx <1thenlelsexf (x—1)

Observation: Last calls in a function body need no new stack frame!

Automatic transformation of tail recursion into loops!!!

212

