Script generated by TTT

Title: Seidl: Virtual_Machines (24.04.2013)
Date: Wed Apr 24 16:00:15 CEST 2013
Duration: 90:36 min

Pages: 70

6 Pointer and Dynamic Storage Management

Pointer allow the access to anonymous, dynamically generated objects, whose
life time is not subject to the LIFO-principle.

—— We need anothe ially unbounded storage area H - the Heap.

NP = New DPointer; points to the lowest occupied heap cell.

EP = Extreme Pointer; points to the uppermost cell, to which S’ can point
(during execution of the actual function).

What can we do with pointers (pointer values)?
o set a pointer to a storage cell,

o dereference a pointer, access the value in a storage cell pointed to by a
pointer.

There a two ways to set a pointer:

(1) Acall malloc(e) reservesaheap area of the size of the value of ¢ and
returns a pointer to this area:

codeg malloc(e) p = codegep

new

(2) The application of the address operator & to a variable returns a pointer
to this variable, i.e. its address (= L-value). Therefore:

codeg (&e) p = codep e p

6 Pointer and Dynamic Storage Management

Pointer allow the access to anonymous, dynamically generated objects, whose
life time is not subject to the LIFO-principle.

—— We need another potentially unbounded storage area H - the Heap.

s O L[]] H
0 T T T MAX
SP EP NP
— — P

NP = New Pointer; points to the lowest occupied heap cell.

EP = Extreme Pointer; points to the uppermost cell, to which SI can point
(during execution of the actual function).

What can we do with pointers (pointer values)?
» set a pointer to a storage cell,

o dereference a pointer, access the value in a storage cell pointed to by a
pointer.

There a two ways to set a pointer:

(1) Acall malloc(e) reservesaheap area of the size of the value of ¢ and

D
returns a pointer to this area:

codeg malloc(e) p = codegep

new

2) The application of the address operator & to a variable returns a pointer
to this variable, i.e. its address (= L-value). Therefore:

codeg (&e) p = code e p

Dereferencing of Pointers:
The application of the operator * to the expression e returns the contents of

the storage cell, whose address is the R-value of ¢:

codey (*€) p = codeg e p
PN R

Exam plu: Given the declarations

struct t { int a[7]; struct t «b; };
inti, j;
struct t xpt;

and the expression ((pt — b) — a)[i+1]

Because of e —a=(xe).a holds:
coder (e —+a)p = codegep
loadc (pa)
add

o
<

What can we do with pointers (pointer values)?
» set a pointer to a storage cell,

e dereference a pointer, access the value in a storage cell pointed to by a

pointer.
There a two ways to set a pointer:

(1) Acall malloc(e) reservesa heap area of the size of the value of ¢ and

returns a pointer to this area:

codeg malloc(e) p = codegep

new

2) The application of the address operator & to avariable returns a pointer
to this variable, i.e. its address (= L-value). Therefore:

codeg (&e) p = codep e p
_— o ——

Dereferencing of Pointers:

The application of the operator # to the expression e returns the contents of
the storage cell, whose address is the R-value of e:

coder. (xe) p = codeg e p
Exam plu: Given the declarations
e-stl;ulc_tl_f_{ int a[7); struct £ xb; };
inti, j; =

struct t «pt;

01

and the expression ((pt — b) — a)[i+1]

Because of ¢ —a=(xe).a holds:

coder (e —+a)p = -L’Uw._
loadc (pa)
—_

add

W
<]

Dereferencing of Pointers:

The application of the operator % to the expression e returns the contents of
the storage cell, whose address is the R-value of e:

code; (xe) p = codeg e p Be = {1_._-'_} Lj Zm 40 .——.—b = 7} Then:
Example: Given the declarations coder ((pt = b) = a)i+1] p
struct ¢ { int a[7]; struct t *b; }; = 2 (, = C) = codeg ((pt—b)—=a)p = codeg ((pt—b)>a)p
inti, j; - l codeg (i+1)p loada 1
struct t #pt; -;,4 loadc 1 loadc 1
and the expression ((pt — b) — a)[i + 1] 2{{_ mul add
e 2 add loadc 1
Because of e—a = (xe).a holds: F !
mul
add
coder (e +a)p = codegep
loadc (pa)
add
57 59
Dereferencing of Pointers:
The application of the operator # to the expression e returns the contents of
the storage cell, whose address is the R-value of e:
codey (xe) p = codeg e p Be p={i—1,j—~ 2,pt = 3,a— 0,b — 7}. Then:
Example: Given the declarations coder ((pt 2 b) wa)lit1lp
struct f { int a[7]; struct £ +b; | = codeg ((pt—=b)—a)p = codeg ((pt—b)—=a)p
inti, j; —— —_ coder (i+1)p loada 1
struct t *pt; loadc 1 loadc 1
and the expression ((pt — b) — a)[i +1] mul add
add loadc 1
Because of e —a=(xc).a holds:
mul
add
coder (e +a)p = codegep
loadc (pa)
add

Dereferencing of Pointers:

The application of the operator * to

the expression e returns the contents of

the storage cell, whose address is the R-value of ¢:

codey (*€) p = codeg e p

Exam lilc: Given the declarations

struct t { int a[7]; struct t «b; };

inti, j;
struct t xpt;

and the expression ((pt — b) — a)[i+1]

Because of e —a=(xe).a holds:

pt: - ™ a
i
L
L coder (e wa)p = codegep
loadc (pa)
add
58 57
b Be p={i—1,j—~ 2,pt = 3,a— 0,b — 7}. Then:
2 2,
coder ((pt = b) —a)i+1]p
@ =~ codeg ((pt = b) —=a)p = codeg ((pt—=b)—=a)p
/ codeg (i+1)p loada 1
—_—
@ loade 1 loadc 1
e— —_
mul add
/
add loadc 1
Pt)—‘ a: —— mul
]I
i add
58 59

For arrays, their R-value equals their L-value. Therefore:

coder ((pt = b) = a) £

= codeg (pt =+ b)p = loada3

loadc 0 loadc 7
— i
\ add add
load |
loadc 0 [
add
In total, we obtain the instruction sequence:
pt ™ ||
loada 3 load loada 1 loadc 1 i
loadc 7 loadc 0 loadc 1 mul ¢ -
add add add add —
60 58
coder, (xe) p = codegep
codeg q p = loadcgq q constant
coder, x p = loadc (px)
codeg (e1=e2) p = coderexp
codeg (&e) p = codepep coder e1 p
store
codeg e p = codepep if ¢ is an array
coder e p = codepep
codeg (ey0ey) p = codeg e p load otherwise
codeg ez p
op op instruction for operator ‘0’
62 63

Example: int a[10], (xb)[10];

withp={a—7,b+— 17}.

For the statement: *a =5; we obtain:
code (s152) p = loadc? loadc 5
loadc 2 loadc 17
coder, (xa) p = codegap = codepap = loadc?7 loadc10 // sizeof int[10] load
code (xsa=5;)p = loadch mul W scaling loadc 3
loadc 7 add loadc 10 // size of int[10]
store loadc 17 mul [/ scaling
pop store add
pop // endof s store
pop /f end of s
As an exercise translate:
s1=b=(&a)+2; and s; = #(b+3)[0] = 5;
64 65
code (s152) p = loadc? loade 5 Freeing Occupied Storage
loadc 2 loadc 17 .
loadc 10 // size of int[10] load Problems:
mul J scaling loade 3 . Th‘e freed storage area is still referenced by other pointers (dangling
add loadc 10 // size of int[10] references).
loade 17 mul Y scaling » After several deallocations, the storage could look like this (fragmentation):
store add
pop /f endof 51 store ‘ ‘ ‘ | | ‘ ‘ |
pop Y endof s f % ? %

65

Potential Solutions:

Trust the programmer. Manage freed storage in a particular data structure

(free list) == malloc or free my become expensive.
Do nothing, i.e.:
code free(e); p = codeg e p (
pop
e simple and (in general) efficient.

Use an automatic, potentially “conservative” Garbage-Collection, which
occasionally collects certainly inaccessible heap space.

Potential Solutions:

. Trust the programmer. Manage freed storage in a particular data structure
(free list) == malloc or free my become expensive.
. Do nothing, i.e.:
code free(e); p = codeg e p
pop

= simple and (in general) efficient.

. Use an automatic, potentially “conservative” Garbage-Collection, which
occasionally collects certainly inaccessible heap space.

9 Functions

The definition of a function consists of:

e aname by which it can be called;

e a specification of the w
* a possible result type;

e ablock of statements.
—————
In C, we have:
codeg f p = load c_f = start address of the code for f

—
—_
—— Function names must be maintained within the address environment!

68

Example G/\ti(
O

main () {
if (x < 0) return 1 il
if (x < 0)returnl; _ fac(2) + fac(1):
else return x fac(x — 1); " _a_ci_)Jr;i_c‘(_.)_

| —— printf (“%d”, n);
PR——

}

int fac (int x) {

Atevery point of execution, several instances (calls) of the same function may be
active, i.e., have been started, but not yet completed.

The recursion tree of the example:

main
fac fac printf
fac fac
fac
69

9.1 Memory Organizafifin for Functions

We conclude:
e conclude - "-—J

The formal parameters and local variables of the different calls of the same \

function (the instances) must be cept separate. lokale Variablen
Idea FP ——=| PCold
organisatorische
FPold Zellen

Allocate a dedicated memory block for each call of a function.
EPold

In sequential programming languages, these memory blocks may be maintained

; L
on a stack. Therefore, they are also called stack frames. formale Parameter.,

Funktionswert

FP = Frame Pbinter; points to the last organizational cell and is used for
addressing the formal parameters and local variables.

70 71

Caveat
e The local variables receive relative addresses +1, +2,.. ..

o The formal parameters are placed below the organizational cells and 9.1 Memory Organization for Functions
Julely ganizatic . 8

therefore have negative addresses relative to FP' :-)

o This organization is particularly well suited for function calls with variable SP ——=

number of arguments as, e.g., for printf.
lokale Variablen
e The memory block of parameters is recycled for storing the return value of

the function :-)) FP ——=| PCold
Simplification The return value fits into a single memory cell. FPold ;ﬁ;{gsatonsche
EPold

formale Parameter /
Funktionswert

FP = Frame Pointer; points to the last organizational cell and is used for

addressing the formal parameters and local variables.

Caveat
e The local variables receive relative addresses +1,+2,....

e The formal parameters are placed below the organizational cells and
therefore have negative addresses relative to FP’ :-)

o This organization is particularly well suited for function calls with variable

number of arguments as, e.g., for printf.

9.1 Memory Organization for Functions

lokale Variablen
e The memory block of parameters is recycled for storing the return value of
the function :-)) FP ——— PCold
- e L - isatorisch
Simplification The return value fits into a single memory cell. FPold ;ﬁiﬁ:ha orische
EPold
formale Parameter /
Funktionswert
FP = Frame Pointer; points to the last organizational cell and is used for
addressing the formal parameters and local variables.
72 71
Caveat

e The local variables receive relative addresses +1,+2,....

o The formal parameters are placed below the organizational cells and
therefore have negative addresses relative to FP' :-)

o This organization is particularly well suited for function calls with variable

number of arguments as, e.g., for printf.

e The memory block of parameters is recycled for storing the return value of

the function :-))

Simplification The return value fits into a single memory cell.

9.1 Memory-Organization for Functions

lokale Variablen

FP —— PCold

organisatorische
FPold Zellen
EPold
formale Parameter /
! Funktionswert
[

FP = Frame Pointer; points to the last organizational cell and is used for
addressing the formal parameters and local variables.

71

~

_aveat

e The local variables receive relative addresses +1,+2,....

The formal parameters are placed below the organizational cells and
therefore have negative addresses relative to FP’ :-)

o This organization is particularly well suited for function calls with variable
number of arguments as, e.g., for printf.

e The memory block of parameters is recycled for storing the return value of
the function :-))

Simplification The return value fits into a single memory cell.

~1
[N}

(@)

aveat

o The local variables receive relative addresses +1, +2,....

The formal parameters are placed below the organizational cells and
therefore have negative addresses relative to FI :-)

o This organization is particularly well suited for function calls with variable
number of arguments as, e.g., for printf.

o The memory block of parameters is recycled for storing the return value of
the function :-))

Simplificaiton: The return value fits into a single cell.

Tasks of a Translator for Functions:
o Generate code for the body of the function!

e Generate code for calls!

~1
v

9.2 Determining Address Environments

We distinguish two kinds of variables:
1. global/extern that are defined outside of functions;

2. local/intern/automatic (inkluding formal parameters) which are defined
inside functions.

The address environment p maps names onto pairs (tag,a) € {G, L} x Z
Caveat
o In general, there are further refined grades of visibility of variables.

o Different parts of a program may be translated relative to different address
environments!

Example

[0] inti;
struct list {

int info; maj) {

struct list * next; intk;

}#1; scanf ("%d", &i);

scanlist (&I);

—
intith (struct list * x, int i) { printf ("\n\t%d\n", ith (1,i));
e —— e e e .

if (i < 1) return x —sinfo; }

else return ith (x —next, i — 1);

Address Environments Occurring in the Program:

@ Qutside of the Function Definitions:

0o : i — (G, 1)
I = (G,2)
ith — (G, _ith)
main — (G, _main)
Inside of ith:
01: i — (L,—4)
x = (L,=3)
I = (G,2)
ith — (G, _ith)
main — (G, _main)

76

Address Environments Occurring in the Program:

@ Qutside of the Function Definitions:

fo: i
1
ith

1111

main

Inside of ith:

0 i

ith

1111

main

76

(G.1)
-2)

—
(G, _ith)
————

(G, _main)

Address Environments Occurring in the Program:

IEI Outside of the Function Definitions:

Po : i = (G1)
I = (G,2)
ith — (G, _ith)
main — (G, jr_n_airl)
Inside of 1il1_
01: i = (L,—4)
x = (L,=3
I = (G,2)
ith — (G, _ith)
main — (G, _main)

76

Example

[0]

inti;
struct list {

int info;

struct list * next;
}#1;

intith (struct list * x, int i) {
if (7 < 1) return x —info;

else return ith (x —next, i — 1);

main () {
intk;
scanf ("%d", &i);
scanlist (&I);

printf ("\n\t%d\n", ith (,i));

9.1 Memory Organization for Functions

SP ——
lokale Variablen
FP ——| PCold
- organisatorische
FPold Zellen
EPold
* L formale Parameter /
h Funktionswert
L4

FP = Frame Pointer; points to the last organizational cell and is used for

addressing the formal parameters and local variables.

71

Address Environments Occurring in the Program:

@ Qutside of the Function Definitions:

fo: 1 s (G, 1)
I = (G,2)
ith +— (G, _ith)
main =~ (G, _main)
Inside of ith:
0 1 s (L, —4)
x = (L,=3)
I = (G,2)
ith +— (G, _ith)
main - (G, _main)

76

Caveat
o The actual parameters are evaluated from right to left !!

o The first parameter resides directly below the organizational cells

e Foraprototype 7 f(11x1,..., 7 %) we define:
’-__________JN-_g___~
X]’—)'(L,—z—lT']‘) X,"—>(L,—2—|T'1|—...—|T',‘|)
—

=3

77

=)

i

~

Caveat
o The actual parameters are evaluated from right to left !!
o The first parameter resides directly below the organizational cells

e Foraprototype 1 f(11x1,..., 7 X;) we define:

x1—= (L =2—|11]) x—= (L —2—|1|—...—|taw])

Inside of main:

02 i (G, 1)
I = (G,2)
kooe (L) =
ifh— — (G, _ith)
main s (G, _main)

78

-)

9.3 Calling/Entering and Exiting/Leaving Functions

Assume that f is the current function, i.e., the caller, and f calls the function g,
ie., the callee. -

The code for the call must be distributed between the caller and the callee.

The distribution can only be such that the code depending on information of the
caller must be generated for the caller and likewise for the callee.

Caveat

The space requirements of the actual paramters is only known to the caller ...

79

Actions when entering ¢:

Bl e o

o

N o

Evaluating the actual parameters

Saving of FP, EP ark
P A

i

Determining the start address of S
Setting of the new FP’

Savingﬁ(;,a.nd

ump to the beginning of
Jump g g ‘;»;,

are part oi‘f'

call

enter
=" Sarepartof g
Allocating of local variables alloc ———en

—_———— =

Setti f new EP
ing of new

[N ;

80

Actions when terminating the call:

1. Storing of the re%
2. Restoring of the registers FI’, ED, SP (’
— return

3. Jumping back into the code of f);e_

Restauration of the 'C

—_—
i : slide

4. Popping the stack }b C \

81

Accordingly, we obtain for a call to a function with at least one parameter and

one return value:

where

codeg g(e1,...,en) p = codeg e, p &

codeg €1 p é_-—-
mark L
codeg g p @'
call G*
‘3 slide (m—1) <«

r—

m is the size of the actual parameters.

Remark

o Of every expression which is passed as a parameter, we determine the

R-value ——= call-by-value passing of parameters.
e e =t

o The function ¢ may as well be denoted by an expression, dessen R-Wert die

Anfangs—Adﬁs-se der aufzurufenden Funktion liefert ...

e Similar to declared arrays, function names are interpreted as constant
pointes onto function code. Thus, the R-value of this pointer is the start
address of the function.

e Caveat! Foravariable int(x)()g thetwo S
gN) und 0

are equivalent! By means of normalization, the dereferencing of function
pointers can be considered as redundant :-)

o During passing of parameters, these are copied.

Consequently,
codeg f p = loadc (pf) f name of a function
—
codeg (xe) p = codegep ¢ function pointer
codeg e p = coderep
move k ¢ a structure of size k
R
where
84

k E
ﬁj move k |

for (i= k-1;i>0; i)
S[SP-+i] = S[S[SP]+il;
SP = SP+k-1;

85

o Similar to declared arrays, function names are interpreted as constant
pointes onto function code. Thus, the R-value of this pointer is the start
address of the function.

e Caveat! Foravariable int(*)()g; the two calls

(x£)0) und &0

are equivalent! By means of normalization, the dereferencing of function
pointers can be considered as redundant :-)

* During passing of parameters, these are copied.

Consequently,

h codep f p = loadc (pf) f name of a function
codeg (xe) p = coderep e function pointer
codeg e p = codep ep

move k e a structure of size k
where

84

Similar to declared arrays, function names are interpreted as constant
pointes onto function code. Thus, the R-value of this pointer is the start
address of the function.

Caveat! Foravariable int(*)()g; thetwo calls

&

(*£)() und g0

are equivalent! By means of normalization, the dereferencing of function
pointers can be considered as redundant :-)

¢ During passing of parameters, these are copied.

Consequently,
codeg f p = loadc (pf) f name of a function
codeg (x¢) p = codegep e function pointer
codeg e p = codep ep
move k ¢ a structure of size k
where
84

The instruction mark saves the registers FI’ and EI” onto the stack.

FP FP
EP EP
- mark

S[SP+1] = EP;

S[SP+2] = FP;
SP=SP +2;
86

The instruction call saves the return address and sets FP and PC onto the
new values.

& FP —
call
—
l](' I]C
2] Y

tmp = S[SP];
S[SP] =PC;
FP =SP;

PC = tmp;

The instruction slide copies the return values into the correct memory cell:

slide m

tmp = S[SP];
SP = SP-m;
S[SP] = tmp;

88

Accordingly, we translate a function definition:

code £ (specs){V_defs if_}-_ﬂ. =

where q

max

Pt

f: enter q // initialize EP

- alloc k // allocate the local variables

code ss p¢
—_—

return // return from call
max + k with
_—

maximal length of the local stack

size of the local variables

address environment for f

/] takes specs, V_defs and p into account

89

The instruction enter q sets the EP to the new value. If not enough space is
available, program execution terminates.

EP —=

ﬂ enter q D

EP=5SP +q;
e .
if (EP > NP)
Error (“Stack Overflow”);

90

The instruction

allock allocates memory for locals on the stack.

k
D alloc k

SP=SP +k;

91

The instruction return pops the current stack frame. This means it restores
the registers ’C, EI” and FI” and returns the return value on top of the stack.

PC L PC

FP L P | FP

EP return EP
e |

PC = 5[FP]; EP = S[FP-2];
if (EP > NP) Error (“Stack Overflow”);
SP = FP-3; FP = 5[SP+2];

The instruction return pops the current stack frame. This means it restores
the registers PC, EP and FI’ and returns the return value on top of the stack.

PC L PC
FP P I
[S—
(5]

EP return EP

PC = S[FP]; EP = S[FP-2];
if (EP = NP) Error (“Stack Overflow”);
SP = FP-3; FP = S[SP+2];

9.4 Access to Variables, Formal Parameters and Returning of
Values

Accesses to local variables or formal parameters are relative to the current FP.
Accordingly, we modify code;, for names of variables.
For px = (tag, u we define

loadcj tag=G

codep x p =
o ee—e=—. | loadrcj tag=1
—_—

The instruction loadrcj computes the sum of FP’and j.

loadrcj

FP - 4]

| B

SP++;
S[SP] = FP+;

94

As an optimization, we introduce analogously to loadaj and storeaj the
new instructions loadrj and storerj

loadr j = loadrcj

load

storerj = loadrcj;
it i

store
—

The code for returne; corresponds to an assignment to a variable with

relative address —3.

code returne; p = codeg e p
—_—
storer -3
—

return

Example For function

int fac (int x) {
if (x < 0) return 1;

else return x = fac (x — 1);

we generate:

96

e L0 ¢
et 3

As an optimization, we introduce analogously to loada j
new instructions loadrj and “storerj

loadrj = loadrcj
load
storerj = loadrcj;
store
95

and

storea j

the

The code for returne; corresponds to an assignment to a variable with

relative address —3.

code returne; p = codeg e p
storer -3

return

Example For function

int fac (int x) {
if (x < 0) return 1;

else return x = fac (x — 1);

we generate:

96

