Script generated by TTT

4,5 The switch-Statement

Idea:
Title: Seidl: Virtual_Machines (23.04.2013) * Multi-target branching in constant time!

o Use a jump table, which contains at its i-th position the jump to the

Date: Tue Apr 23 14:01:31 CEST 2013 beginning of the i-th alternative.

® Realized by indexed jumps.

Duration: 91:29 min
jumpiB

Pages: 29 | L] Q

PC PC
PC =B +5[SP];
SP—;
39
Simplification: .
code s p = codeg e p Co: code ssp p B: jump Co
check 0k B jump D
We only regard switch-statements of the following form:
jump Cy
Cy: code ssg p D:

s = switch(e) {
case 0: SSUM jump D

case 1: ssy break;

e The Macro check 0 kB checks, whether the R-value of ¢ is in the interval

case k—1: ssp 1 break; [0, k], and executes an indexed jump into the table B

default: ss
* o The jump table contains direct jumps to the respective alternatives.

}

o At the end of each alternative is an unconditional jump out of the
s is then translated into the instruction sequence: switch-statement.

40 41

codesp =

e The Macro check 0k B

codeg e p

check 0k B

C[)Z

C;\Z

code ssg p B: jump C,
jump D

jump Ci
code ss p D:
jump D

checks, whether the R-value of ¢ is in the interval

[0, k], and executes an indexed jump into the table B

o The jump table contains direct jumps to the respective alternatives.

o At the end of each alternative is an unconditional jump out of the
switch-statement.

41

check 0kB = dup dup jumpi B
loadc 0 loadc k A: pop
geq le loadc k
jumpz A jumpz A jumpi B

o The R-value of ¢ is still needed for indexing after the comparison. It is
therefore copied before the comparison.

o This is done by the instruction dup.

o The R-value of ¢ is replaced by k before the indexed jump is executed if it is
less than 0 or greater than k.

check 0k B

= dup
loadc 0
8eq
jumpz A

dup jumpi B
loadc k A: pop

le loadc k
jumpz A jumpi B

e The R-value of e is still needed for indexing after the comparison. It is

therefore copied before the comparison.

o This is done by the instruction

dup.

o The R-value of ¢ is replaced by k before the indexed jump is executed if it is
less than 0 or greater than k.

Note:

o The jump table could be placed directly after the code for the Macro check.
This would save a few unconditional jumps. However, it may require to
search the switch-statement twice.

o If the table starts with u instead of 0, we have to decrease the R-value of ¢ by
u before using it as an index.

« If all potential values of ¢ are definitely in the interval [0, k], the macro
check is not needed.

5 Storage Allocation for Variables

Goal:
Assaciate statically, i.e. at compile time, with each variable x a fixed (relative)
address px
Assumptions:
» variables of basic types, e.g. int, ... occupy one storage cell.

o variables are allocated in the store in the order, in which they are declared,
starting at address 1.

Consequently, we obtain for the declaration d =t x1; ... ty xx; (t; basic
type) the address environment p such that

ox; =i, i=1,...,k

45

5 Storage Allocation for Variables

Goal:
Associate statically, i.e. at compile time, with each variable x a fixed (relative)
address px
Assumptions:
» variables of basic types, e.g. int, ... occupy one storage cell.

» variables are allocated in the store in the order, in which they are declared,
starting at address 1.

Consequently, we obtain for the declaration d =t x1; ... t x; (t; basic
type) the address environment p such that

ox; =i, i=1,...,k

45

‘—:—\k “LC;I/\])’

5.1 Arrays

Example: a;

Thearray a consists of 11 components ajid therefore needs 11 cells.
pa is the address of the componet a[0]

a[10]

> al0]

46

We need a function sizeof (notation: | - |), computing the space requirement of a
type:

1 if t basic
k-¥ ift =¥k

Accordingly, we obtain for the declaration d =ty x1; ... t x5
px; = 1
px; = pxi-1+ |t fori > 1

Since | - | can be computed at compile time, also p can be computed at compile
time.

47

Task:

Extend coder and codeg to expressions with accesses to array components.

Be tc] a; the declaration of an array a.

To determine the start address of a component afi] , we compute
pa+ |t * (R-value of i).

In consequence:

codep ale] p = loadc (pa)
codeg e p
loadc |t
mul

add

... or more general:

48

a

coder. e1[e2] p

codeg %7 = W& G g

codeg e; p
loadc |#|
mul

add

Remark:
e InC, an array is a pointer. A declared array a is a pointer-constant, whose
R-value is the start address of the array.
o Formally, we define for an array e: codeg e p = coder e p
o In G, the following are equivalent (as L-values):
2]a] al2] a+2

Normalization: Array names and expressions evaluating to arrays occur in
front of index brackets, index expressions inside the index brackets.

49

Task:

Extend code; and coder to expressions with accesses to array components.

Be tc] a; the declaration of an array ~ a.

To determine the start address of a component afi] , we compute
pa+ |t| * (R-value of i).

In consequence:

codep ale] p = loadc (pa)
codeg e p
loadc |t
mul

add

... or mote general:

48

5.2 Structures
In Modula and Pascal, structures are called Records.
Simplification:

Names of structure components are not used elsewhere.
Alternatively, one could manage a separate environment py for each
structure type st.

Be struct { int a; int b; } x; part of a declaration list.

e x has as relative address the address of the first cell allocated for the
structure.

o The components have addresses relative to the start address of the structure.
In the example, these are a +— 0, b — 1.

Let t = struct {#1 ¢1;.. .t &; }. We have

.
= Y I
i=1

5.2 Structures

In Modula and Pascal, structures are called Records.

Simplification:

pcy = 0 and
‘ Names of structure components are not used elsewhere.
pc; = pco1+ | fori>1 . i
Alternatively, one could manage a separate environment py foreach
structure type st.
We thus obtain:
coder. (e.c) p _ coder e p Be struct [int a; int b; } x; part of a declaration list.
loadc (pe) o x has as relative address the address of the first cell allocated for the
add structure.
® The components have addresses relative to the start address of the structure.
In the example, these are a — 0, b — 1.
51 50
Let t = struct {t1 ci;.. .t ci; }. We have
. Example:
th = Y I amj
i=1
pcr = 0 and Be struct{inta;inth;} x; suchthat p={x—13,a— 0,b— 1}.
pc = peio1+ ko] fori>1 This yields:
coder, (x.b)p = loadc13
We thus obtain: loadc 1
coder, (ec)p = codepep add
loadc (pc)
add
52

w

6 Pointer and Dynamic Storage Management

Pointer allow the access to anonymous, dynamically generated objects, whose
life time is not subject to the LIFO-principle.

== We need another potentially unbounded storage area H — the Heap.

-

6 Pointer and Dynamic Storage Management

Pointer allow the access to anonymous, dynamically generated objects, whose
life time is not subject to the LIFO-principle.

== We need another potentially unbounded storage area H — the Heap.

g
[] = P I N
0 T MAX a T ? T MAX
0 e () sPEP NP
NP = New DPointer; points to the lowest occupied heap cell. NP = New Pointer; points to the lowest occupied heap cell.
EP = Extreme Pointer; points to the uppermost cell, to which SP can point EP = Extreme Pointer; points to the uppermost cell, to which SP can point
(during execution of the actual function). (during execution of the actual function).
53 53
6 Pointer and Dynamic Storage Management

Idea: Pointer allow the access to anonymous, dynamically generated objects, whose

» Stack and Heap grow toward each other in S, but must not collide. (Stack
Overflow).

¢ A collision may be caused by an increment of SI” or a decrement of NP
o EP saves us the check for collision at the stack operations.

o The checks at heap allocations are still necessary.

life time is not subject to the LIFO-principle.

—— We need another potentially unbounded storage area H - the Heap.

NP = New Pointer; points to the lowest occupied heap cell.

EP = Extreme Pointer; points to the uppermost cell, to which SI can point
(during execution of the actual function).

What can we do with pointers (pointer values)?

Idea:
1
» Stack and Heap grow toward each other in S, but must not collide. (Stack)

Overflow).
* A collision may be caused by an increment of SI” or a decrement of NP.

o LD saves us the check for collision at the stack operations.

o The checks at heap allocations are still necessary.

(2)

o set a pointer to a storage cell,

o dereference a pointer, access the value in a storage cell pointed to by a
pointer.

There a two ways to set a pointer:

Acall malloc(e) reserves a heap area of the size of the value of e and
returns a pointer to this area: L

coder malloc (e) p codeg e p

new

The application of the address operator & to a variable returns a pointer
to this variable, i.e. its address (= L-value). Therefore:

codeg (&e) p = codep e p

6 Pointer and Dynamic Storage Management
Pointer allow the access to anonymous, dynamically generated objects, whose
life time is not subject to the LIFO-principle.

We need another potentially unbounded storage area H — the Heap.

s EEEEE O[] B e
0 T T T MAX
SP EP NP
NP = New DPointer; points to the lowest occupied heap cell.
EP = Extreme Pointer; points to the uppermost cell, to which S’ can point

(during execution of the actual function).

NP

n

new

if (NP - S[SP] < EP)
S[SP] = NULL;
else {
NP = NP - S[SP];
S[SP] = NF;

e NULL is a special pointer constant, identified with the integer constant 0.

o In the case of a collision of stack and heap the NULL-pointer is returned.

What can we do with pointers (pointer values)? NP El NP —

» set a pointer to a storage cell, —

n
o dereference a pointer, access the value in a storage cell pointed to by a

pointer. L j
new

There a two ways to set a pointer:

(1) Acall malloc(e) reservesaheap area of the size of the value of ¢ and I
returns a pointer to this area:

if (NP - S[SP] < EP)

codeg malloc(e) p = codegep | S[SP] = NULL;
else {
new NP = NP - S[SP];
S[SP] = NF;
}

(2) The application of the address operator & to a variable returns a pointer

to this variable, i.e. its address (= L-value). Therefore:
o NULL is a special pointer constant, identified with the integer constant 0.

codeg (&) p = coder e p o In the case of a collision of stack and heap the NULL-pointer is returned.

