Script generated by TTT

Title: Seidl: Virtual_Machines (17.04.2013)
Date: Wed Apr 17 16:02:17 CEST 2013
Duration: 87:08 min

Pages: 36

| 8 |
I mul

SP-—;

’

S[SP] = S[SP] * S[SP+1];

mul expects two operands on top of the stack, consumes both, and pushes
their product onto the stack.

... the other binary arithmetic and logical instructions, add, sub, div, mod,

and, or and xor, work analogously, as do the comparison instructions eq, neq,

le, leq, gr and geq.

The general principle:
» instructions expect their arguments on top of the stack,
* execution of an instruction consumes its operands,

o results, if any, are stored on top of the stack.

]

Instruction loadcq needs no operand on top of the stack, pushes the

-
loadc Lb

SP++;
S[SP] = q;

constant q onto the stack.

Note: the content of register SI is only implicitly represented, namely through
the height of the stack.

Example: The operator leq
ieg
-

Remark: 0 represents false, all other integers true.

Unary operators neg and not consume one operand and produce one

S[SP] = - S[SP];

result.

Example: Code for 1+7:

loadc 1 loadc 7 add

Execution of this code sequence:

1

loade 1 loadc 7 1| add

Example:

Code for (1 +7) 3% Z

loadc 1 loadc 7 add wc ZL ‘/\""-\/Q)l'

Execution of this code sequence:

7

7]
loade 1 loade 7 add

20

Variables are associated with cells in 5:

A4
v
X

Code generation will be described by some Translation Functions, code, coder,
and codeg.

Arguments: A program construct and a function p. p delivers for each variable x
the relative address of x. p is called Address Environment.

Variables can be used in two different ways:

Example:

r=y+1

We are interested in the value of y, but in the address of x.

The syntactic position determines, whether the L-value or the R-value of a

variable is required.

L-value of x = address of x
R-value of x = content of x
codeg e p produces code to compute the R-value of ¢ in the
address environment p
codep e p | analogously for the L-value

Note:

Not every expression has an L-value (Ex.: x +1).

Variables are associated with cells in S:

Z
y:
X

: 1 a1 o d . i I . 3
ede geRefaitor it beceseritved by-seme-TransladenFrrotions, TouT, Tote
—wdeoder—

Arguments: A program construct and a function p. p delivers for each variable x

the relative address of x. p is called Address Environment.

Variables can be used in two different ways:

Example: r=y+1
We are interested in the value of y, but in the address of x.

The syntactic position determines, whether the L-value or the R-value of a
variable is required.

L-value of x = address of x

R-value of x = content of x

codeg e p | produces code to compute the R-value of ¢ in the
i address environment p

coder e p | analogously for the L-value

Note:

Not every expression has an L-value (Ex.: x4+ 1).

We define:

codeg (e1 +e2) p

codeg (—e) p

codeg q p

coder x p

codeg €1 p
codeg ez p
add

... analogously for the other binary operators
codeg e p
neg

... analogously for the other unary operators
loadc q

loade (px)

codeg x p = code, xp

load

The instruction load loads the contents of the cell, whose address is on top of
the stack.

[
]

load

S[SP] = S[S[SP]];

24

Lotds (x)

codeg xp = coder xp

load

The instruction load loads the contents of the cell, whose address is on top of
the stack.

[|
]

load -

S[SP] = SIS[SP]l;

codeg (x=¢)p = codegep
codep x p

store

store writes the contents of the second topmost stack cell into the cell, whose
address in on top of the stack, and leaves the written value on top of the stack.

Note: this differs from the code generated by gcc 77

o

store -
113

S[S[SP]] = S[SP-1];

SP--;
24 25
_ — :t - D .
Example: Codefor e=x=y—1 withp={x—4y—7} - /l
code, e p produces: 3 Statements and Statement Sequences
loadc 7 loadc 1 loadc 4 Is e anexpression, then e; isastatement.
load sub store Statements do not deliver a value. The contents of the SP before and after the

Improvements:
Introduction of special instructions for frequently used instruction sequences,
e.g.,

loadaq = loadcq
load

storeaq = loadcq
store

26

execution of the generated code must therefore be the same.

A
codee; p = codegep) '

p Op

The instruction pop eliminates the top element of the stack.

— 0

SP--;

27

The code for a statement sequence is the concatenation of the code for the

statements of the sequence:
code (sss)p = codesp

code ss p

codee p = /I empty sequence of instructions

28

3 Statements and Statement Sequences

Is ¢ anexpression then ¢; isastatement.

Statements do not deliver a value. The contents of the SP before and after the
execution of the generated code must therefore be the same.

codee; p = coderep
ﬂ pop

The instruction pop eliminates the top element of the stack.

p Op

[1

SP--;

27

The code for a statement sequence is the concatenation of the code for the

statements of the sequence:
code (sss)p = codesp

code ss p

code ¢ p = // empty sequence of instructions

28

4 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:

jump A
B i
]("

PC PC
PC=A;

29

4 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:

jump A
| = |
PC

PC
PC=A;

29

4 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:

jump A
A = i
°C

PC PC

PC=A;

29

1 jumpz A
| R= B o
PC PC
I jumpz A
- |
- PC - PC

if (S[SP] == 0) PC = A;
SP--;

4 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:

jump A
B i
]("

PC PC
PC=A;

29

jumpz A

e

]

=
2 [0

jumpz A

-

]

-
3 [

if (S[SP] == 0) PC = A;
SP--;

For ease of comprehension, we use symbolic jump targets. They will later be
replaced by absolute addresses.

Instead of absolute code addresses, one could generate relative addresses, i.e.,
relative to the actual PC.

Advantages:
e smaller addresses suffice most of the time;

o the code becomes relocatable, i.e., can be moved around in memory.

30 31
4.1 One-sided Conditional Statement codesp — codegep codey, fore
jumpz A jumpz -
. . code §' ¢
Let us first regard s = if (e) 5. code s’ p code for s’
A
Idea: eeoe

o Put code for the evaluation of e and s’ consecutively in the code store,

¢ Insert a conditional jump (jump on zero) in between.

w
]

w
]

Example: Be p={x—4,y—7} and

4.2 Two-sided Conditional Statement s = if(x>y) (i)
xX=x—-1; (i)
Let us now regard s = if () s else s;. The same strategy yields: elsey =y —x; (7it)
code s p produces:
codesp = codegep codey, fore
3 jumpz A jumpz, ° loada 4 loada 4 A: | loada?
code 51 p loada 7 loada 7 loada 4
) code fors |
jump B ar sub sub
A: codes;p jump hd jumpz A storeald storea 7
B: code for s 2 -] pop pop
jump B B:
[N N J - J p
(7) (11) (7ii)
34 35
Example: Be p={x—4,y—~7} and
s = if(x>y) (i)
4.3 while-Loops x=x—1; (i7)

Let us regard the loop s = while (e) 5. We generate:

codes p

codeg e p
jumpz B
code s’ p

jump A

codey fore
jumpz [
code for s’
jump ®
o0

code s p produces:

loada 4
loada 7
gr
jumpz A

elsey=y—x;

loada 4
loada 7
sub
storea 4
pop
jump B

(i1)

A loada 7
loada 4
sub
storea 7

poep

(iii)

Example: Be

p={rx—4,y—7} and

s = if(x>y) (i)
x=x-—uy; (if) 43 while-Loops
Ise y = y—x; (iif) .
ceey =y a u Let us regard the loop s = while (¢) s". We generate:
code s p produces:
codesp = codeg fore =
loada 4 loada 4 A: loada?7 o)
A: codegep jumpz °
loada 7 loada 7 loada 4 .
jump{E> ,
gr sub sub T, code for s
code s’ p
jumpz A storea 4 storea 7 jump °
pop pop L L -
jump B B:
(i) (i) (iii)
35 3
44 for-Loops
Example: Be p={a—7,b—8,c~9} ands the statement:

while (a > 0) {c=c+1;a=a—b;}

code s p produces the sequence:

A: Jloada7 loada 9 | loada 7
loadc 0 loadc 1 loada 8
gr [sub
jumpz B [Sforead] storea 7

pPop Pep
jump A

37

The for-loop s = for (e1;e2;e3) s is equivalent to the statement sequence

e1; while (e2) {s" e3; } — provided that s’ contains no continue-statement.
We therefore translate:

codesp = codege ?

pop
A: codegepp

jumpz B
code s’ p
codeg e3 p
pop
jump A

4.5 The switch-Statement

Idea:

o Multi-target branching in constant time!

e Use a jump table, which contains at its i-th position the jump to the
beginning of the i-th alternative.

Realized by indexed jumps.

jumpi B

|
PC

