Script generated by TTT

Example:
Title: Seidl: Virtual_Machines (03.07.2012) bigger(X,Y) X = clephant,¥ = horse
bigger(X,Y) « X = horse, Y = donkey
Date: Tue Jul 03 14:08:00 CEST 2012 bigger(X,Y) — X = donkey,Y = dog
bigger(X, Y) i« X = donkey, Y = monkey
Duration: 87:05 min is_bigger(X,Y) <+ bigger(X,Y)

is_bigger(X,Y) « bigger(X,Z),is_bigger(Z,Y)
Pages: 52 ? sh’phsz, dog)
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A More Realistic Example: A More Realistic Example:
app(X,Y,Z) « X=[LY=Z app(X,Y,Z) « X=[],Y=2Z
app(X,Y,Z) + X=[H|X'], Z=[H|Z'], app(X",Y,Z’) app(X,Y,Z) « X =[H|X'], Z=[H|Z'], app(X",Y,Z")

? };‘)p(x, [Y,c],)Lzr,‘rb,Z]) ? app(X, [Y,c], [a,b,Z]) X: qu g}

V -
4 % Remark: % < o
—_— [] ——  the atom empty list

[H|Z]
la, b, Z]

binary constructor application
shortcut for:  [a|[b|[Z|[]]]]




A program p is constructed as follows:

tou= a|X|_|f(t... )

g u= plt,.. )| X=t

c z= pXy,.. . X)+—g,--.8
r Cleven. cn?g

e A term f either is an atom, a variable, an anonymous variable or a
constructor application.

e A goal g either is a literal, i.e., a predicate call, or a unification.

e A clause c consists of a head p(Xi, . .., X;) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

e A program consists of a sequence of clauses together with a single goal as
query.

Procedural View of Proll programs:

&H goal. == procedure call

predicate —— procedure
clause == definition
term — value
unification == basic computation step
binding of variables —— side effect
Note: Predicate calls ...

o ... donot have a return value.
o ... affect the caller through side effects only :-)

e ... may fail. Then the next definition is tried :-))

—— backtracking

Procedural View of Proll programs:

goal —— procedure call
predicate == procedure
clause —— definition
term — value
unification —— basic computation step
binding of variables == side effect

Note: Predicate calls ...

e ... do not have a return value.
o ... affect the caller through side effects only :-)

o ... may fail. Then the next definition is tried :-))

—— backtracking
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27  Arxchitecture of the WiM:

The Code Store:

c L] [ ]
0 1 1 ] e
C =  Code store - contains WiM program;
every cell contains one instruction;
PC =  Program Counter - points to the next instruction to executed;




The Runtime Stack:

SP
FP

FP

Runtime Stack — every cell may contain a value or an address;

Stack Pointer - points to the topmost occupied cell;
Frame Pointer — points to the current stack frame.
Frames are created for predicate calls,

contain cells for each variable of the current clause

The Heap:

0 1 1 ] wp

H = Heap for dynamicly constructed terms;

HP =  Heap-Pointer - points to the first free cell;

o The heap in maintained like a stack as well :-)
* A new-instruction allocates a object in H.

* Objects are tagged with their types (as in the MaMa) ...

The Heap:

HP

T ] w

= Heap for dynamicly constructed terms;

Heap-Pointer — points to the first free cell;

o The heap in maintained like a stack as well :-)

* A new-instruction allocates a object in H.

o Objects are tagged with their types (as in the MaMa) ...

Al a atom 1 cell
.-

R variable 1 cell
.-

unbound variable 1 cell
I structure (n+1) cells
-
-
—
S| f/n
2




28 Construction of Terms in the Heap

Parameter terms of goals (calls) are constructed in the heap before passing.

Assume that the address environment p returns, for each clause variable X its
address (relative to FP) on the stack. Then codes tp  should ...
o construct (a presentation of)  in the heap; and

¢ return a reference to it on top of the stack.
Idea:

o Construct the tree during a post-order traversal of ¢

e with one instruction for each new node! é

Example: t Ef(ﬁ'@ Y),a,Z).
Assume that X is initialized, i.e., |S[FP + p X] | contains already a reference,

nd@ are not yet initialized.

A

P
12
[}

Representing t

4,.. reference to X
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For a distinction, we mark occurrences of already initialized variables through
over-lining (e.g. X).

Note: Arguments are always initialized!

Then we define:

codeqap = putatoma coden f(ty,....ta)p codea t1p
codegs Xp = putvar(pX)
codey Xp = putref(pX) codey ty p

codes_p = putanon putstruc

For a distinction, we mark occurrences of already initialized variables through
over-lining (e.g. X).

Note: Arguments are always initialized!

Then we define:

codesap = putatoma coden f(ty,...,tn)p = codestip
codes Xp = putvar (pX)

codey Xp = putref(pX) codey t, p
codes__p = putanon putstruct f/n

For f(g(X,Y),a,Z)and p = {X — 1,Y = 2, Z ++ 3} this results in the sequence:

putref 1 putatom a
putvar 2 putvar 3
putstruct g/2 putstruct £/3




P/Y)G-— ? /_\z/\/),

For a distinction, we mark occurrences of already initialized variables through
over-lining (e.g. X).

Note: Arguments are always initialized! . . .
’ The instruction  putatoma constructs an atom in the heap:

Then we define:

codejap = putatoma codey f(ty,...,ty)p = codestip -
codegs Xp = putvar(pX) putatom a
codesXp = putref(pX) codey t, p

codes__p = putanon putstruct f/n

For f(g(X,Y),a,Z)and p={X — 1,Y = 2, Z + 3} this results in the sequence:
SP++; S[SP] = new (A,a);

putref 1 putatom a
putvar 2 putvar 3
putstruct g/2 putstruct f/3
226 227

The instruction  putvari introduces a new unbound variable and
additionally initializes the corresponding cell in the stack frame: The instruction  putanon introduces a new unbound variable but does not
store a reference to it in the stack frame:

[RL - putanon

putvar i 1 ‘ ,
|
FP » FP - FP ——> FP ——=

SP=SP + 1;
S[SP] = new (R, HD);

SP=SP +1;
S[SP] = new (R, HP);
S[FP + i] = S[SP[;




The instruction putrefi pushes the value of the variable onto the stack:

N putref i A
H/ \‘l 4)=\'/ -\'
i 1 N AN
FP ——= FP ——=

SP=SP + 1;
S[SP] = deref S[FP + il;

RE SOl

The instruction putrefi pushes the value of the variable onto the stack:

- putref i \_7_
L . ® - -®
i { N N
FP ——= FP ——=

SP=SP +1;
S[SP] = deref S[FP + il;

The auxiliary function deref contracts chains of references:

ref deref (ref v) {
if (H[v]==(R,w) && v!=w) return deref (w);

else return \ ’P l‘r
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The instruction ~ putstruct f/n  builds a constructor application in the heap:

.‘/7'\,‘

i — tj

n :}\J: putstruct f/n \\_/4:
—) ——>=[S[/n ~

v =new (5, f, n);
SP=SP-n+1;
for (i=1; i<=n; i++)

H[v +i]=5[SP +i-1];
S[SP] = v;

The instruction  putstruct# uilds a constructor applicatian ig the heap:

N

(/\j E— ?\-fl

|)\ﬁ/('\ - ')\/I

I A A putstruct f/n A A
|‘)\\- j‘(\ I— f/n NN

v =new (S, f, n);
SP=SP-n+1;
for (i=1; i<=n; i++)

H[v +i]=S[SP +i-1];
S[SP] =v;




codeg p(t, ..., k) p

codey t1 p

// allocates the stack frame

29 The Translation of Literals (Goals) code ty p
call p/k // calls the procedure p/k
B:
Idea:
¢ Literals are treated as procedure calls.
o We first allocate a stack frame.
e Then we construct the actual parameters (in the heap)
e ... and store references to these into the stack frame.
¢ Finally, we jump to the code for the procedure/predicate.
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codeg p(ty,....ts) p = mark B // allocates the stack frame Stack Frame of the WiM:
codey ty p
SP =
ol local stack
codeg ty p
call p/k // calls the procedure p/k
B: local variables
FP ——={ posCont 0 1
Example: pla, X, g(X,Y)) with p={X—1Y—2} FPold |-1
We obtain: e
S 6 org. cells
S -3 §
mark B putref 1 callp/3 §§ 4
putatom a putvar 2 B: s
putvar 1 putstruct g/2 . -
236 237




Remarks:

e The positive continuation address records where to continue after successful
treatment of the goal.

¢ Additional organizational cells are needed for the implementation of
backtracking

—— will be discussed at the translation of predicates.

Stack Frame of the WiM:

5P T local stack

local variables

FP — posCont. 0
FPold |-1
S ) | )
§:§ 3 6 org,. cells
Sy e i
=F
s
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Remarks:

o The positive continuation address records where to continue after successful
treatment of the goal.

+ Additional organizational cells are needed for the implementation of
backtracking

——  will be discussed at the translation of predicates.

The instruction mark B allocates a new stack frame:

mark B

P —= FP —=

SP=SP + 6;
S[SP] = B; S[SP-1] = FP;




The instruction  call p/n  calls the n-ary predicate p:

call p/n
n
FP ——=
pc[] L rcpm

FP=SP-n;
PC=p/n;
240

The instruction call p/n  calls the n-ary predicate p :

call p/n
n
FP ——=
pc] B ropa

FP=S5P-n;
PC=p/n;
240

30 Unification

Convention:

* By X, we denote an occurrence of X;
it will be translated differently depending on whether the variable is
initialized or not.

o We introduce the macro put X p

put X p = putvar (pX)
put_p = putanon

putXp = putref (pX)

30 Unification

Convention:

e By X, we denote an occurrence of X;
it will be translated differently depending on whether the variable is
initialized or not.

e We introduce the macro put X p

putX p putvar (p X)
put_p = putanon

putXp = putref (pX)




Let us translate the unification X =¢.

Idea 1:
o Push a reference to (the binding of) X onto the stack;
o Construct the term ¢ in the heap;

¢ Invent a new instruction implementing the unification :-)

Let us translate the unification X =1t.

Idea 1:
o Push a reference to (the binding of) X onto the stack;
o Construct the term t in the heap;

e Invent a new instruction implementing the unification

s

codeg (X=t)p = putXp
codes t p

unify

=)

- €

30 Unification

Convention:

* By X, we denote an occurrence of X;
it will be translated differently depending on whether the variable is
initialized or not.

o We introduce the macro put X p

put X p = putvar (pX)
put__p putanon
putX p putref (p X)

Let us translate the unification X =+¢.

Idea 1:
o Push a reference to (the binding of) X onto the stack;
o Construct the term ¢ in the heap;

o Invent a new instruction implementing the unification

codeg (X=t)p = putXp
codey t p

unify

ra
4
)




Example:

Consider the equation:

U=f(g(X,Y),aZ)
Then we obtain for an address environment

p={X—=1Y—=227Z—=3U—4}

The instruction  unify calls the run-time function unify() forthe

topmost two references:

AT Y
(X )
\)\’/‘ unify E/ \1
X ) )

putref 4 putref 1 putatom a unify
putvar 2 putvar 3 unify (S[SP-1], S[SP]);
putstruct g/2 putstruct f/3 SP=SP-2;
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Y= f (X
N
bool unify (ref u, ref v) { 'f\ \
if (u == v) return true;

The instruction  unify calls the run-time function unify() for the
topmost two references:

P /./"\1
( ] )
A . Y
| 7 | |
\_/ unity \\_7_ /,-

unify (S[SP-1], S[SP]);
SP = SP-2;

ra
1
b

if (H[ul == (R, )) {
if (Hlv] == (R,.)) {

if (wev) {

Hlul = (R,v); trail (u); return true;
} else {

Hlv] = (R,u); trail (v); return true;
H

} elseif (check (u,v)) {
= (R,v); trail (u); return true;
} else {
backtrack(); return false;




-~

A

if ((Hlv] == (R,.)) {
if (check (v,u)) {

H[v] = (R,u); trail (v); return true;
} else {
backtrack(); return false;

}
if (H[ul==(A,a) && Hlv]==(A,a))
return true;
if (H[ul==(S, f/n) && Hlv]==(8, £/n)) {

for (int i=1; i<=n; i++)

if(lunify (deref (H[u+i]), deref (H[v+il)) return false;

return true;
}

backtrack(); return false;

if ((H[v] == (R, )) {

if (check (v,u)) {

Hlv] = (R,u); trail (v); return true;

} else {
backtrack(); return false;

}
if (Hlul==(A,a) && Hlv]==(A,a))
return true;
if (H[ul==(S, f/n) && H[v]==(S, f/n)) {

for (int i=1; i<=n; i++)

if(lunify (deref (H[u+il), deref (H[v+i])) return false;

return true;
}

backtrack(); return false;
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- ~R] \-“’M - ~[R] |- -
, a ), a
‘L/’_.? S | 2 EZ
Rl —{R| |~
P 5 [R[ —={R] / R[F=R[ |
/,——“—JS> S |2 S| f/2




R[] &

S| f2 S| fl2

[A aJ
- R[]
S| ﬁ S|

Otherwise, we could implement the run-time function check() as follows:
The run-time function trail() records the#‘pmd new binding.

The run-time function backtrack() initiates backtracking.

The auxiliary function check() performs the occur-check: it tests

. ) o bool check (ref u, ref v) {
whether a variable (the first argument) occurs inside a term (the second

R if (u == v) return false;
argument). if (H[v] == (S, £/0)) {
Often, this check is skipped, i.e., for (int i=1; i<=n; i++)

if (!I:heck(u deref (HFeri'lp))

returnl false ;I

bool check (ref u, ref v) { return true;} return true;

o




Discussion:

e The translation of anequation X =1t isverysimple :-)

o Often the constructed cells immediately become garbage :-(

Idea 2:

* Push a reference to the run-time binding of the left-hand side onto the stack.
¢ Avoid to construct sub-terms of t whenever possible !

¢ Translate each node of t into an instruction which performs the unifcation
with this node !!




