Script generated by TTT

Title: Seidl: Virtual_Machines (22.05.2012)
Date: Tue May 22 14:02:41 CEST 2012
Duration: 94:12 min

Pages: 24

9.3 Calling/Entering and Leaving Functions

Be f the actual function, the Caller, and let f call the function g, the Callee.

The code for a function call has to be distributed among the Caller and the
Callee:

The distribution depends on who has which information.

77

Actions upon calling/entering g:

1. Saving FP, EP

2. Computing the actual parameters
3. Determining the start address of g
4. Setting the new FP’

5. Saving PC and

jump to the beginning of g
6. Setting the new EP
7. Allocating the local variables
Actions upon leaving ¢

1. Restoring the registers FP, EP, 5P

2. Returning to the code of f, i.e. restoring the

PC

78

} mark

available in f

call

enter

alloc

e e ;

} available in g

return

The caller must be able to continue execution in its frame after the return from a

function. Therefore, at a function call the following values have to be saved into

organizational cells:

o the FP

e the continuation address after the call and

e the actual EP.

Simplification: The return value fits into one storage cell.

Translation tasks for functions:
o Generate code for the body!

e Generate code for calls!

Altogether we generate for a call:

codeg g(er,...,en) p = mark

codeg e1 p

codeg ey p
codeg g p
call n
—_—
where n=space for the actual parameters
Note:

o Expressions occurring as actual parameters will be evaluated to their
R-value ——= Call-by-Value-parameter passing.

¢ Function g can also be an expression, whose R-value is the start address of
the function to be called ...

» Function names are regarded as constant pointers to functions, similarly to
declared arrays. The R-value of such a pointer is the start address of the
function.

e Foravariable int(x)() g ,thetwo calls
(*3)() und g0

are equivalent :-)
Normalization: Dereferencing of a function pointer is ignored.

o Structures are copied when they are passed as parameters.

In consequence:

coder f p = loadc (pf) f a function name
codep (%¢) p = codegep ¢ a function pointer
codeg e p = codep ep
o move k ¢ a structure of size k
—_—
30

[} [

k E
move k
[

for (i = k-1; i>0; i-)
S[SP+i] = S[S[SP]+i];
SP = SP+k-1;

81

The instruction mark allocates space for the return value and for the
organizational cells and saves the FI” and EP.

FP FP
EP EP

mark

5[SP+2] = ED;
S[SP+3] = EP;

The instruction calln saves the continuation address and assigns F’, SP’, and

PC their new values.

FP=SP-n-1,

S[FP] = PG;
PC = S[SP];
SP--;

Correspondingly, we translate a function definition:

code tf (specs){V_defs ss} p =
£ entefq) // Setting the EP

alloc k /f Allocating the local variables
return // leaving the function
where ¢ = return type of fwith || <1
q = maxS+k where
maxS = maximal depth of the local stack
k = space for the local variables
ﬁ = address environment for f

// takes care of specs, V_defs and p

84

The instruction enter q sets EI to its new value. Program execution is
terminated if not enough space is available.

D enter q D

EP=SP +gq;
if (EP > NP)

/L) Error (“Stack Overflow™);

The instruction return pops the actual stack frame, i.e., it restores the
registers ’C, EP, SI, and FP” and leaves the return value on top of the stack.

PC PC
FP FP
EP return EP

ﬁm‘ J|

PC = 5[FP]; EP = S[FP-2];

if (EP > NP) Error (“Stack Overflow”);
SP = FP-3; FP = 5[SP+2];

e 1

T FP-

87

9.4 Access to Variables and Formal Parameters, and Return of
Values

Local variables and formal parameters are addressed relative to the current FP.

We therefore modify coder. for the case of variable names.

For px = (tag,j) we define
—
loadcj tag=G
codep x p = { =
e loadrcj tag=1L
———
88

The instruction loadrcj computes the sum of FP and j.

loadre j

SP++;
S[SP] = FP+j;

89

FP

As an optimization one introduces the instructions loadrj and storerj
This is analogous to loadaj and storeaj.

loadrj = loadrcj
load

storerj = loadrcj
store

The code for returne; corresponds to an assignment to a variable with
relative address —3.

code returne; p = codeg e p
storer -3

return

90

Example: For the function

int fac (int x) {

if (x < 0) return.1;

else return/x * fac (¥ — 1);

t
we generate:
_fac: enter q loadc 1 A:
alloc 0 storer -3
loadr 1 return
loadc 0 jump B

leq
jumpz A

loadr 1
mark
loadr 1
loadc 1
sub

loadc _fac
call 1

where ppe:x—=(L,1) and q=14+442=7.

91

mul
storer -3
return

return

As an optimization one introduces the instructions loadrj and storerj
This is analogous to loadaj and storeaj.

loadrj = loadrcj
load

storerj = loadrcj
store

The code for returne; corresponds to an assignment to a variable with

9.4 Access to Variables and FormagPasameters, and Return of
Values

Local variables and formal parameters are addressed relative to the current FP.

We therefore modify coder. for the case of variablé€ names.

relative address —3. For px = (tag,j) wegdaline
code returne; p = codeg e p loadc i tae = G
codeL x p = ! 7
storer -3 loadrcj tag=L
return
90 88
We thus define:
codep® = enter (k+6)
. . alloc (k+1)
10 Translation of Whole Programs .
mar
The state before program execution starts: loadc _main
call 0
SP= -1 FP = EP =0 PC =0 NP = MAX pob
halt
Be p = Vﬁdcfs. F_def, ... Fi[.fff”, a program, where F_def; defines a function f: code F_def, p
f;, of which one is named main. .
The code for the program p consists of:)
o code F_def, p
¢ Code for the function definitions F_def;;
o Code for allocating the global variables; where) = empty address environment;
e Code for the call of main(); o = global address environment;
e the instruction halt. k = space for global variables
_main S { f1,..., &}

The Translation of Functional
Programming Languages

94

11 The language PuF

We only regard a mini-language PuF (“Pure Functions®”).
We do not treat, as yet:

e Side effects;

e Data structures.

95

A Program is an expression ¢ of the form:
e u= b | x| (Ope) | (1 Oze2)
| (if ep then ¢y else e3)
| (eer...ex1)
| (fn xq,...,x1=¢)
| (let xy=e1;...;x, =€, in eg)
|

(letrec x1 =¢1;...;x, = ¢, In ¢p)

An expression is therefore
® abasic value, a variable, the application of an operator, or
* a function-application, a function-abstraction, or
* alet-expression, i.e. an expression with locally defined variables, or
e a letrec-expression, i.e. an expression with simultaneously defined local
variables.

For simplicity, we only allow as basic type.

96

4,) ¢
it & Huam &4 W e, = (6)
Example: Froe = G‘ % (a = %

The following well- Known fu.nctlon comp ufeahe fach)z;l of a natural number:

letrec fac = fnx=ifx < 1thenl
else x - fac (x — 1
R

As usual, we only use the minimal amount of parentheses. G" x 3’ £ p E)
< et f)
[y 8 2 v et (857
oo ity

CBV: Arguments are evaluated before they are passed to the funct'j (asin

SML); fo g bf =) (Fx g (C-xa-w)
CBN: Arguments are passed unevaluatgd; fhey areo ly evaluated wh the1
pltey s s gy it L)

in fac7

There are two Semantics:

value is needed (as in Haskell).

by ek Psl-:ucnxg X bt &415‘(*’
P F e A ke

97 1_ f“\L :-:

12 Architecture of the MaMa:

We know already the following components:

01 f D PC

C = Code-store — contains the MaMa-program;
each cell contains one instruction;

PC = Program Counter — points to the instruction to be executed next;

98

