Script generated by TTT

Title:
Date:
Duration:

Pages:

Example:

Seidl: Virtual_machines (24.04.2012)
Tue Apr 24 14:04:49 CEST 2012
90:33 min

33

The operator leq

leq
L []

Remark: 0 represents false, all other integers true.

Unary operators neg and not consume one operand and produce one

result.

S[SP] = - S[SP;

Example: The operator leq

ieq
-

Remark: 0 represents false, all other integers true.

Unary operators neg and not consume one operand and produce one

result.
:
S[SP] = -S[SP];
19
Example: Codefor 1+7:
loadc 1 loadc 7 add

Execution of this code sequence:

loadc 1 loade 7 add

20

Example: Codefor 1+7:

loadc 1 loadc 7 add

Execution of this code sequence:

1

loade 1 l loadc 7 1| add

20

Variables are associated with cells in S:

z:
vy
X:

Code generation will be described by some Translation Functions, code, coder,

and codeg.

Arguments: A program construct and a function p. p delivers for each variable x

the relative address of x. p is called Address Environment.

Variables can be used in two different ways:

Example: x=y+1
We are interested in the value of y, but in the address of x.
The syntactic position determines, whether the L-value or the R-value of a
variable is required.
L-value of x = address of x

R-value of x = content of x

codeg € p produces code to compute the R-value of ¢ in the
address environment p

coder e p | analogously for the L-value

Note:

Not every expression has an L-value (Ex.: x +1).

We define:

codeg (e1+e€2) p

codeg (—e) p

codeg q p

coder x p

codeg e 2
codeg ez p
add

... analogously for the other binary operators
codeg e p
neg

... analogously for the other unary operators
loadc q

loadc (px)

codeg xp = coder xp

load

The instruction load loads the contents of the cell, whose address is on top of

codeg (x=¢)p = codegep
codep x p

store

store writes the contents of the second topmost stack cell into the cell, whose
address in on top of the stack, and leaves the written value on top of the stack.

the stack.
Note: this differs from the code generated by gcc 77
[] [13]
— foad —
113]
. . store
S[SP] = S[S[SP]l;
S[S[SP]] = S[SP-1];
SP--;
24 25
Example: Code for (@ =y—1 withp={x—4y—7}
code, e p produces: 3 Statements and Statement Sequences
loadc 7 loadc 1 loadc 4 Is e anexpression, then e; isastatement.
load sub store Statements do not deliver a value. The contents of the SP before and after the

7

Improvements:
Introduction of special instructions for frequently used instruction sequences,

e.g.,

storeaq =

26

execution of the generated code must therefore be the same.

codee; p = codegep

p Op

The instruction pop eliminates the top element of the stack.

— 1

SP--;

27

The code for a statement sequence is the concatenation of the code for the
statements of the sequence:

code (sss) p = codesp

code ss p

code ¢ p = /' empty sequence of instructions

28

codeg (x=¢)p = codegep
codep x p

store

store writes the contents of the second topmost stack cell into the cell, whose
address in on top of the stack, and leaves the written value on top of the stack.

Note: this differs from the code generated by gcc 77

store -

S[S[SP]] = S[SP-1];
SP--;

25

The code for a statement sequence is the concatenation of the code for the
statements of the sequence:

code (sss) p = codesp

code ss p

code ¢ p = // empty sequence of instructions

28

4 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:

jum
o

PC PC

29

jumpz A

]
=
3 [0

PC
ﬁ jumpz A
- A
PC PC
if (S[SP] == 0) PC = A;
SP--;
30

jumpl A
= A =
PC PC
jump@
0 - 1
PC PC
if (S[SP] == 0) PC = A;
SP--;
30

For ease of comprehension, we use symbolic jump targets. They will later be
replaced by absolute addresses.

Instead of absolute code addresses, one could generate relative addresses, i.e.,
relative to the actual PC.

Advantages:
e smaller addresses suffice most of the time;

o the code becomes relocatable, i.e., can be moved around in memory.

31

4,1 One-sided Conditional Statement

Let us first regard s = if @@
Idea:
o Put code for the evaluation of ¢ and s’ consecutively in the code store,

o Insert a conditional jump (jump on zero) in between.

4.2 Two-sided Conditional Statement

Let us now regard s = if (e) s; else s,. The same strategy yields:

codesp = codegrep codey fore
jumpz A jumpz o codesp = codegep codey, fore
e of - -
code 5" p code fors’ jumpz A jumpz [
Ao code 51 p
oo e . code fors |
jump
code 53 p 7 ‘Ump) d
code for s 2 -
LN N J -
3 34
Example: Be p={x—4,y—~7} and
4.2 Two-sided Conditional Statement s = if(x>y) (i)
X=x—1 (i)
Let us now regard s = if (¢) s1 else s2. The same strategy yields: else y=y—x; (iii)
code s p produces:
codesp = codegrep codey fore
jumpz A jumpz ® /-’3 loada 4
code 51 p loada 7
.) : code fors oagd
jump B gr
A code S22]'ump ® jump
B: ... code for s 5 ! : /-9 pop
jump B B: .
[N N] - J P

(i) (ii) (#ii)

. E\dmph‘: Be p={aw—7b+—8,c— 9} ands thestatement:
4.3 while-Loops

while (¢ >0){c=c+1, a=a—b;}
Let us regard the loop s = while (¢) s’. We generate:
code s p produces the sequence:

codesp = codey fore = loada 7 loada 9 loada 7
A codepep jumpz o loadc 0 loadc 1 loada 8
jumpz B , add sub
code for s
code s’ p storea 9 storea 7
jump A jump [pop pop
B: ... eee = jump
36 37
44 for-Loops 44 for-Loops
The for-loop s= for (e1;e2;e3) 8" s equivalent to the statement sequence The for-loop s = for (e1;e2;e3) ' is equivalent to the statement sequence
e1; while (e2) {s’ es; } — provided that s’ contains no continue-statement. e1; while (e2) {s" e3; } — provided that s’ contains no continue-statement.
erefore tr: alafe We therefore translate: N
VT /\ codesp = codege codesp = codege
pop pop
A: codegezp A: codegepp
jumpz B jumpz B
code §' p code s’ p
codeg e3 p codeg e3 p
pop pop
jump A jump A
B B:
38

4.3 while-Loops

Let us regard the loop s = while (¢) s’. We generate:

(%)Y)

codesp = codey, fore -
A: codegep jumpz .
jumpz B
Jamp , code for s’
code s’ p @\ %}
jump A) jump .
B: ... [N ——

Cefle cS % (/\r?)) —

% r~—F

A

44 for-Loops

The for-loop s = for (e1;e2;e3) s is equivalent to the statement sequence

e1; while (e2) {s" e3; } — provided that s’ contains no continue-statement.
We therefore translate:

codesp = codege;

pop
A: codegerp

jumpz B
code s’ p
coder e3 p
pop
jump A

4.5 The switch-Statement

Idea:
o Multi-target branching in constant time!

e Use ajump table, which contains at its i-th position the jump to the
beginning of the i-th alternative.

Realized by indexed jumps.

ﬂ jumpi B
=[] J;l: [B+q]
PC

PC = B + S[SP];
SP—;

4.5 The switch-Statement
[dea:
o Multi-target branching in constant time!

o Use a jump table, which contains at its i-th position the jump to the
beginning of the i-th alternative.

* Realized by indexed jumps.

ﬂ jumpi B
H 5 L
PC

PC = B + S[SP];
SP—;

Simplification: . .
code s p = codeg e p Cy: code ssp p B: jump Cp

check 0k B jump D
We only regard switch-statements of the following form:
.- jump Cy
s = switch (e) { Ci: codessip D:
jump D

case 0: ssp break;

case 1: ssy break;

o The Macro check 0 kB checks, whether the R-value of ¢ is in the interval
casek—1: ssi1 break; [0, k], and executes an indexed jump into the table B

default: ss;
o The jump table contains direct jumps to the respective alternatives.

o At the end of each alternative is an unconditional jump out of the

s is then translated into the instruction sequence: switch-statement.

40

