# beispiel: Zugauskunftssystem

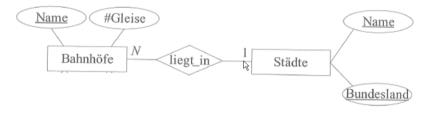
#### Script generated by TTT

Title: groh: profile1 (08.05.2015)

Date: Fri May 08 09:14:03 CEST 2015

Duration: 90:41 min

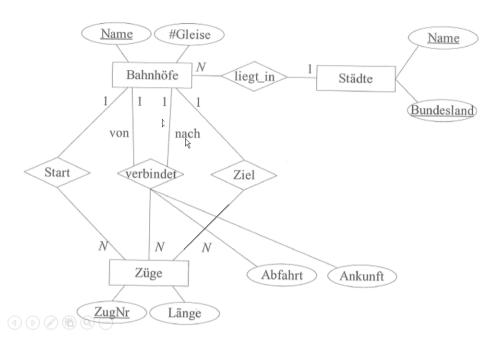
Pages: 72

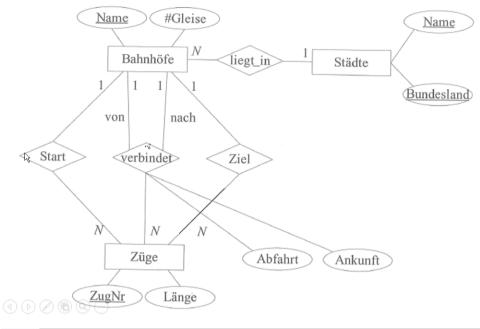

#### Aufgabe 2.6 (aus [2])

Modellieren Sie ein Zugauskunftssystem, in dem die wichtigsten Züge (z.B. die Intercity- und Eurocity-Züge) repräsentiert werden. Aus dem System sollen die Start- und Zielbahnhöfe und die durch den Zug verbundenen Bahnhöfe einschließlich Ankunfts- und Abfahrtszeiten ersichtlich sein. Geben Sie die Funktionalitäten der Beziehungstypen an.

## Deispiel: Zugauskunftssystem

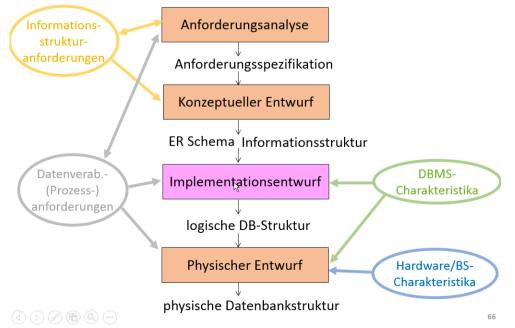
### Name #Gleise <u>Name</u> Bahnhöfe liegt\_in Städte Bundesland von nach verbindet Start Ziel N Züge Abfahrt Ankunft Länge


# beispiel: Zugauskunftssystem






# beispiel: Zugauskunftssystem


# Beispiel: Zugauskunftssystem





## ruasen des Datenbankentwurfs

## Grundlagen des relationalen Modells



Seien  $A_1, A_2, ..., A_n$  Attribute und  $D_1, D_2, ..., D_n$  ihre Domänen (Wertebereiche)

- Relation:  $R \subseteq D_1 \times ... \times D_n$ Bsp.: Telefonbuch  $\subseteq$  string x string x integer
- Tupel: t ∈ RBsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- **Schema**: legt die Struktur der gespeicherten Daten fest Bsp.: Telefonbuch: {[Name: string, Straße: string, <u>Telefon#:integer]</u>} Notation: sch(R)

Seien  $A_1, A_2, ..., A_n$  Attribute und  $D_1, D_2, ..., D_n$  ihre **Domänen** (Wertebereiche)

- Relation: R ⊆ D<sub>1</sub> x ... x D<sub>n k</sub>
   Bsp.: Telefonbuch ⊂ string x string x integer
- Tupel: t ∈ R
   Bsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- Schema: legt die Struktur der gespeicherten Daten fest
   Bsp.: Telefonbuch: {[Name: string, Straße: string, <u>Telefon#:integer]</u>}
   Notation: sch(R)

- Seien  $A_1, A_2, ..., A_n$  Attribute und  $D_1, D_2, ..., D_n$  ihre **Domänen** (Wertebereiche)
- Relation:  $R \subseteq D_1 \times ... \times D_n$ Bsp.: Telefonbuch  $\subseteq$  string x string x integer
- Tupel: t ∈ R
   Bsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- Schema: legt die Struktur der gespeicherten Daten fest
   Bsp.: Telefonbuch: {[Name: string, Straße: string, <u>Telefon#:integer]</u>}
   Notation: sch(R)

# Grundlagen des relationalen Modells

Seien  $A_1, A_2, ..., A_n$  Attribute und  $D_1, D_2, ..., D_n$  ihre **Domänen** (Wertebereiche)

- Relation:  $R \subseteq D_1 \times ... \times D_n$ Bsp.: Telefonbuch  $\subseteq$  string x string x integer
- Tupel:  $t \in R$ Bsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- Schema: legt die Struktur der gespeicherten Daten fest
   Bsp.: Telefonbuch: {[Name: string, Straße: string, <u>Telefon#:integer]</u>}
   Notation: sch(R)

## Grundlagen des relationalen Modells

Seien  $A_1, A_2, ..., A_n$  Attribute und  $D_1, D_2, ..., D_n$  ihre Domänen (Wertebereiche)

- Relation:  $R \subseteq D_1 \times ... \times D_n$ Bsp.: Telefonbuch  $\subseteq$  string x string x integer
- Schema: legt die Struktur der gespeicherten Daten fest Bsp.: Telefonbuch: {[Name: string, Straße: string, <u>Telefon#:integer]</u>} Notation: sch(R)

Seien  $A_1, A_2, ..., A_n$  Attribute und  $D_1, D_2, ..., D_n$  ihre **Domänen** (Wertebereiche)

- Relation: R ⊆ D<sub>1</sub> x ... x D<sub>n</sub>
   Bsp.: Telefonbuch ⊂ string x string x integer
- Tupel: t ∈ R
   Bsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- **Schema**: legt die Struktur der gespeicherten Daten fest
  Bsp.: Telefonbuch: {[Name: string, Straße: string, <u>Telefon#:integer</u>]}
  Notation: sch(R)

- Seien A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub> **Attribute** und D<sub>1</sub>, D<sub>2</sub>, ..., D<sub>n</sub> ihre **Domänen** (Wertebereiche)
- Relation: R ⊆ D<sub>1</sub> x ... x D<sub>n</sub>
   Bsp.: Telefonbuch ⊂ string x string x integer
- Tupel: t ∈ R
   Bsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- Schema: legt die Struktur der gespeicherten Daten fest
   Bsp.: Telefonbuch: {[Name: string, Straße: string, Telefon#:integer]}
   Notation: sch(R)



# Grundlagen des relationalen Modells

Seien  $A_1, A_2, ..., A_n$  Attribute und  $D_1, D_2, ..., D_n$  ihre **Domänen** (Wertebereiche)

- Relation: R ⊆ D<sub>1</sub> x ... x D<sub>n</sub>
   Bsp.: Telefonbuch ⊂ string x string x integer
- Tupel: t ∈ R
   Bsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- **Schema**: legt die Struktur der gespeicherten Daten fest
  Bsp.: Telefonbuch: {[Name: string, Straße: string, Telefon#:integer]}
  Notation: sch(R)

## Grundlagen des relationalen Modells

Seien  $A_1, A_2, ..., A_n$  Attribute und  $D_1, D_2, ..., D_n$  ihre Domänen (Wertebereiche)

- Relation:  $R \subseteq D_1 \times ... \times D_n$ Bsp.: Telefonbuch  $\subseteq$  string x string x integer
- Tupel: t ∈ R
   Bsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- Schema: legt die Struktur der gespeicherten Daten fest
   Bsp.: Telefonbuch: {[Name: string, Straße: string, Telefon#:integer]}
   Notation: sch(R)

## Grundlagen des relationalen Modells

## Grundlagen des relationalen Modells

Seien  $A_1, A_2, ..., A_n$  Attribute und  $D_1, D_2, ..., D_n$  ihre **Domänen** (Wertebereiche)

- Relation: R ⊆ D<sub>1</sub> x ... x D<sub>n</sub>
   Bsp.: Telefonbuch ⊂ string x string x integer
- Tupel: t ∈ R
   Bsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- Schema: legt die Struktur der gespeicherten Daten fest
   Bsp.: Telefonbuch: {[Name: string, Straße: string, Telefon#:integer]}
   Notation: sch(R)

- Seien  $A_1, A_2, ..., A_n$  Attribute und  $D_1, D_2, ..., D_n$  ihre **Domänen** (Wertebereiche)
- Relation: R ⊆ D<sub>1</sub> x ... x D<sub>n</sub>
   Bsp.: Telefonbuch ⊂ string x string x integer
- Tupel: t ∈ R
   Bsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- Schema: legt die Struktur der gespeicherten Daten fest
   Bsp.: Telefonbuch: {[Name: string, Straße: string, Telefon#:integer]}
   Notation: sch(R)



## Grundlagen des relationalen Modells

Seien 
$$A_1, A_2, ..., A_n$$
 Attribute und  $D_1, D_2, ..., D_n$  ihre **Domänen** (Wertebereiche)

- Relation: R ⊆ D<sub>1</sub> x ... x D<sub>n</sub>
   Bsp.: Telefonbuch ⊆ string x string x integer
- Tupel: t ∈ R
   Bsp.: t = ("Mickey Mouse", "Main Street", 8124711)
- **Schema**: legt die Struktur der gespeicherten Daten fest
  Bsp.: Telefonbuch: {[Name: string, Straße: string, <u>Telefon#:integer]</u>}
  Notation: sch(R)

# Grundlagen des relationalen Modells

| Telefonbuch                              |             |       |  |  |  |  |
|------------------------------------------|-------------|-------|--|--|--|--|
| Name:String Straße:String Telefon#:integ |             |       |  |  |  |  |
| Mickey Mouse                             | Main Street | 4711  |  |  |  |  |
| Donald Duck                              | Broadway    | 95672 |  |  |  |  |
| ···                                      |             |       |  |  |  |  |

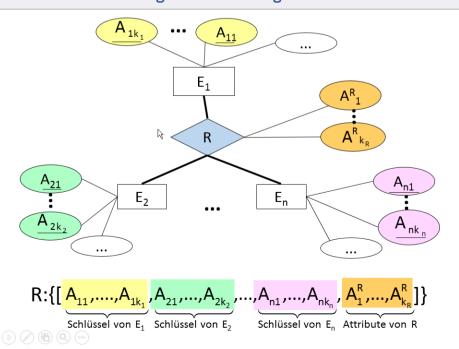
- Ausprägung: der aktuelle Zustand der Datenbasis
- Schlüssel: minimale Menge von Attributen, deren Werte ein Tupel eindeutig identifizieren
- Primärschlüssel: wird unterstrichen
  - Einer der Schlüsselkandidaten wird als Primärschlüssel ausgewählt
  - Hat eine besondere Bedeutung bei der Referenzierung von Tupeln

# Grundlagen des relationalen Modells

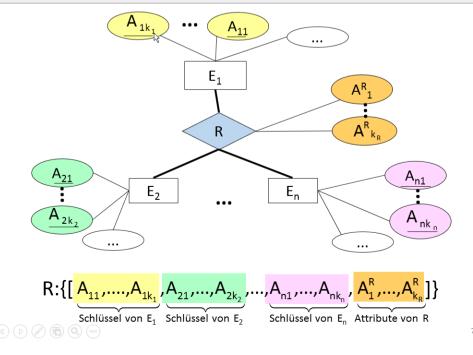
| Telefonbuch                              |             |       |  |  |  |
|------------------------------------------|-------------|-------|--|--|--|
| Name:String Straße:String Telefon#:integ |             |       |  |  |  |
| Mickey Mouse                             | Main Street | 4711  |  |  |  |
| Donald Duck                              | Broadway    | 95672 |  |  |  |
|                                          |             |       |  |  |  |

- Ausprägung: der aktuelle Zustand der Datenbasis
- Schlüssel: minimale Menge von Attributen, deren Werte ein Tupel eindeutig identifizieren
- Primärschlüssel: wird unterstrichen
  - Einer der Schlüsselkandidaten wird als Primärschlüssel ausgewählt
  - Hat eine besondere Bedeutung bei der Referenzierung von Tupeln

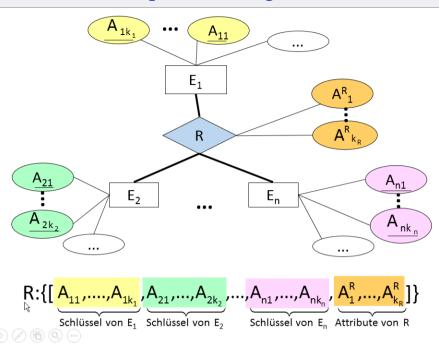
## Grundlagen des relationalen Modells


| Telefonbuch                              |             |       |  |  |  |  |
|------------------------------------------|-------------|-------|--|--|--|--|
| Name:String Straße:String Telefon#:integ |             |       |  |  |  |  |
| Mickey Mouse                             | Main Street | 4711  |  |  |  |  |
| Donald Duck                              | Broadway    | 95672 |  |  |  |  |
|                                          |             |       |  |  |  |  |

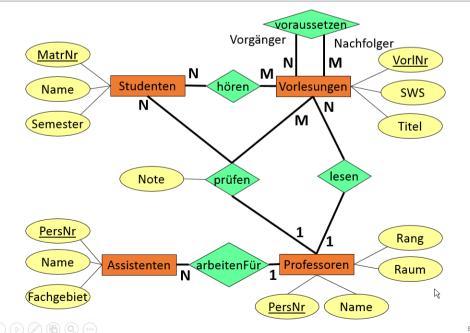
• Ausprägung: der aktuelle Zustand der Datenbasis


 Schlüssel: minimale Menge von Attributen, deren Werte ein Tupel eindeutig identifizieren

- Primärschlüssel: wird unterstrichen
  - Einer der Schlüsselkandidaten wird als Primärschlüssel ausgewählt
  - Hat eine besondere Bedeutung bei der Referenzierung von Tupeln


# Relationale Darstellung von Beziehungen




### Relationale Darstellung von Beziehungen




# Relationale Darstellung von Beziehungen

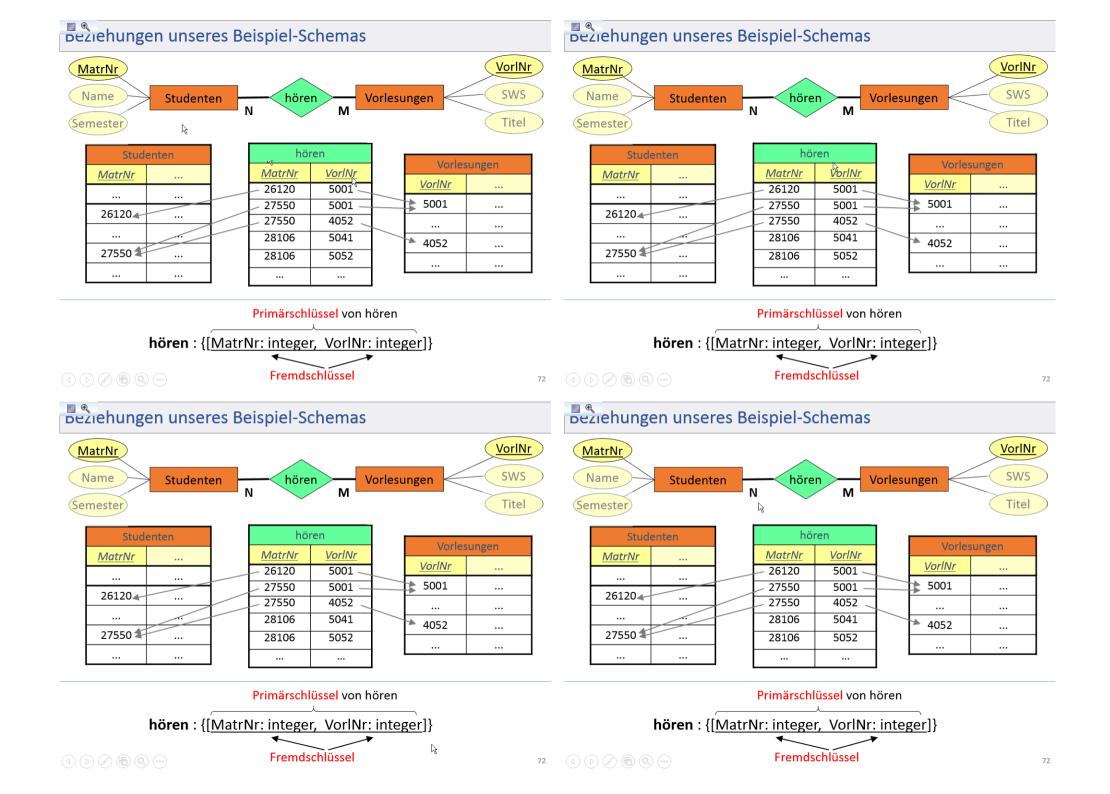


# Schema



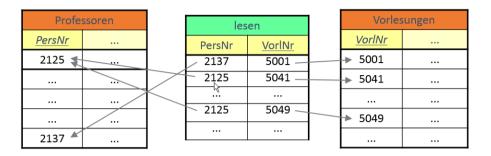
## Relationale Darstellung von Beziehungen




# Relationale Darstellung von Entities

**Studenten**: {[MatrNr:integer, Name: string, Semester: integer]}

 $\textbf{Vorlesungen:} \ \{ \underline{[VorlNr:integer]}, Titel: string, SWS: integer] \}$ 


**Professoren**: {[PersNr:integer, Name: string, Rang: string, Raum: integer]}

**Assistenten**: {[PersNr:integer, Name: string, Fachgebiet: string]}



# Beziehungen unseres Beispiel-Schemas







#### Nur das ist der

Primärschlüssel von lesen!!! Der zugehörige Prof ist durch 1:N bereits eindeutig bestimmt



<u>PersNr</u>

Beziehungen unseres Beispiel-Schemas

lesen

lesen

VorlNr

5001

5041

...

5049

PersNr

2137

2125

...

2125

Primärschlüssel von lesen

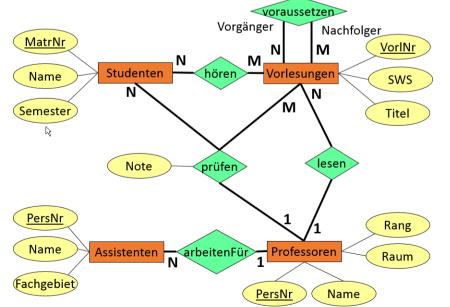
Professoren

•••

**lesen**: {[PersNr: integer, VorlNr: integer]}

Fremdschlüssel

Professoren


PersNr

...

...

2137

2125



# verreinerung des relationalen Schemas



- ⇒ 1:N-Beziehungen (auch 1:1-Bez.) sind verfeinerbar:
  - Initial-Entwurf:

**lesen:**  $\{[PersNr, \underline{VorlNr}]\} \equiv \textbf{lesen:} \{[\underline{VorlNr}, \underline{PersNr}]\}$ 

Verfeinerung durch Zusammenfassung

**Vorlesungen**: {[VorlNr, Titel, SWS, gelesenVon]} **Professoren**: {[PersNr, Name, Rang, Raum]}

VorlNr

...

...

Vorlesungen

VorlNr

▶ 5001

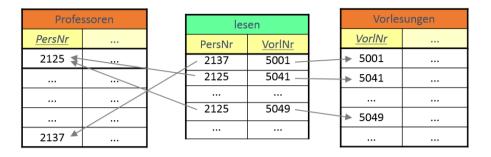
5041

5049

Nur das ist der

bestimmt

Primärschlüssel von lesen!!!


1:N bereits eindeutig

Der zugehörige Prof ist durch

Vorlesungen

# beziehungen unseres Beispiel-Schemas







Nur das ist der

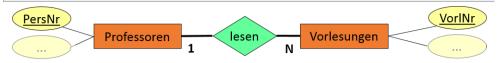
Primärschlüssel von lesen!!! Der zugehörige Prof ist durch 1:N bereits eindeutig bestimmt

# verreinerung des relationalen Schemas



- $\Rightarrow$  1:N-Beziehungen (auch 1:1-Bez.) sind verfeinerbar:
  - Initial-Entwurf:

**Vorlesungen :** {[VorlNr, Titel, SWS]}


**Professoren :** {[PersNr, Name, Rang, Raum]}

**lesen:**  $\{[PersNr, \underline{VorlNr}]\} \equiv \textbf{lesen:} \{[\underline{VorlNr}, \underline{PersNr}]\}$ 

Verfeinerung durch Zusammenfassung

**Vorlesungen**: {[VorlNr, Titel, SWS, gelesenVon]} **Professoren**: {[PersNr, Name, Rang, Raum]}

# verieinerung des relationalen Schemas

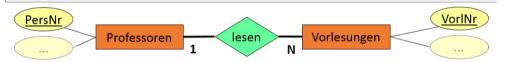


- ⇒ 1:N-Beziehungen (auch 1:1-Bez.) sind verfeinerbar:
  - Initial-Entwurf:

**Vorlesungen :** {[VorlNr, Titel, SWS]}

**Professoren**: {[PersNr, Name, Rang, Raum]}

**lesen:** {[PersNr, VorlNr]} ≡ **lesen:** {[VorlNr, PersNr]}


Verfeinerung durch Zusammenfassung

**Vorlesungen :** {[VorlNr, Titel, SWS, gelesenVon]}

**Professoren**: {[PersNr, Name, Rang, Raum]}



# verieinerung des relationalen Schemas

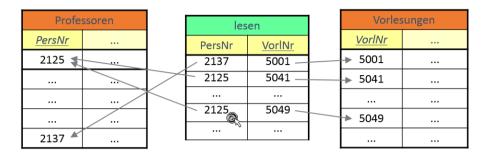


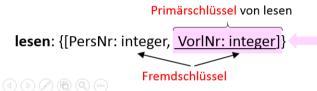
- ⇒ 1:N-Beziehungen (auch 1:1-Bez.) sind verfeinerbar:
  - Initial-Entwurf:

**Vorlesungen :** {[VorlNr, Titel, SWS]}

**Professoren :** {[PersNr, Name, Rang, Raum]}

**lesen:** {[PersNr, VorlNr]} ≡ **lesen:** {[VorlNr, PersNr]}


Verfeinerung durch Zusammenfassung


Vorlesungen: {[VorlNr, Titel, SWS, gelesenVon]}

**Professoren :** {[PersNr, Name, Rang, Raum]}

# beziehungen unseres Beispiel-Schemas







Nur das ist der

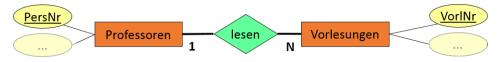
Primärschlüssel von lesen!!!
Der zugehörige Prof ist durch
1:N bereits eindeutig
bestimmt

# verreinerung des relationalen Schemas



- ⇒ 1:N-Beziehungen (auch 1:1-Bez.) sind verfeinerbar:
  - Initial-Entwurf:

**Vorlesungen :** {[VorlNr, Titel, SWS]}


**Professoren :** {[PersNr, Name, Rang, Raum]}

**lesen:**  $\{[PersNr, \underline{VorlNr}]\} \equiv \textbf{lesen:} \{[\underline{VorlNr}, \underline{PersNr}]\}$ 

Verfeinerung durch Zusammenfassung

**Vorlesungen**: {[VorlNr, Titel, SWS, gelesen Von]} **Professoren**: {[PersNr, Name, Rang, Raum]}

# verieinerung des relationalen Schemas



- ⇒ 1:N-Beziehungen (auch 1:1-Bez.) sind verfeinerbar:
  - Initial-Entwurf:

Vorlesungen: {[VorlNr, Titel, SWS]}

**Professoren**: {[PersNr, Name, Rang, Raum]}

**lesen:** {[PersNr, <u>VorlNr</u>]} ≡ **lesen:** {[<u>VorlNr</u>, <u>PersNr</u>]}

Verfeinerung durch Zusammenfassung

**Vorlesungen**: {[VorlNr, Titel, SWS, gelesen Von]} **Professoren**: {[PersNr, Name, Rang, Raum]}

**Professoren :** {<u>[Persivr</u>, Name, Rang, Ro

## verieinerung des relationalen Schemas

|      | Name       |    |     |      |                      |     |      |
|------|------------|----|-----|------|----------------------|-----|------|
|      | Sokrates   | C4 |     | 5001 | Grundzüge            | 4   | 2137 |
| 2126 | Russel     | C4 |     | 5041 | Ethik                | -4  | 2125 |
|      | Kopernikus |    | 310 | 5043 | Erkenntnistheorie    | 3   | 2126 |
|      | Popper     |    |     | 5049 | Māeutik              |     | 2125 |
| 2134 | Augustinus |    | 309 | 4052 | Logik                | - 4 | 2125 |
| 2136 | Curie      | C4 | 36  | 5052 | Wissenschaftstheorie |     | 2126 |
|      |            |    |     |      |                      |     |      |

Vorsicht: So geht es NICHT!! --> Anomalien

|        | Professoren |      |      |       |  |  |  |  |  |
|--------|-------------|------|------|-------|--|--|--|--|--|
| PersNr | Name        | Rang | Raum | liest |  |  |  |  |  |
| 2125   | Sokrates    | C4   | 226  | 5041  |  |  |  |  |  |
| 2125   | Sokrates    | C4   | 226  | 5049  |  |  |  |  |  |
| 2125   | Sokrates    | C4   | 226  | 4052  |  |  |  |  |  |
|        |             |      |      |       |  |  |  |  |  |
| 2134   | Augustinus  | С3   | 309  | 5022  |  |  |  |  |  |
| 2136   | Curie       | C4   | 36   | ???   |  |  |  |  |  |
|        |             |      |      |       |  |  |  |  |  |

|               | Vorlesungen          |     |  |  |  |  |
|---------------|----------------------|-----|--|--|--|--|
| <u>VorlNr</u> | Titel                | SWS |  |  |  |  |
| 5001          | Grundzüge            | 4   |  |  |  |  |
| 5041          | Ethik                | 4   |  |  |  |  |
| 5043          | Erkenntnistheorie    | 3   |  |  |  |  |
| 5049          | Mäeutik              | 2   |  |  |  |  |
| 4052          | Logik                | 4   |  |  |  |  |
| 5052          | Wissenschaftstheorie | 3   |  |  |  |  |
| 5022          | Glaube und Wissen    | 2   |  |  |  |  |
|               |                      |     |  |  |  |  |

- Update-Anomalie: Was passiert wenn Sokrates umzieht?
- Lösch-Anomalie: Was passiert wenn "Glaube und Wissen" wegfällt?
- Einfüge-Anomalie: Curie forscht nur und liest keine Vorlesung.

# verieinerung des relationalen Schemas

#### Vorsicht: So geht es NICHT!! --> Anomalien

| Professoren   |            |      |      |       |  |  |  |
|---------------|------------|------|------|-------|--|--|--|
| <u>PersNr</u> | Name       | Rang | Raum | liest |  |  |  |
| 2125          | Sokrates   | C4   | 226  | 5041  |  |  |  |
| 2125          | Sokrates   | C4   | 226  | 5049  |  |  |  |
| 2125          | Sokrates   | C4   | 226  | 4052  |  |  |  |
| :             |            |      | :    |       |  |  |  |
| 2134          | Augustinus | С3   | 309  | 5022  |  |  |  |
| 2136          | Curie      | C4   | 36   | ???   |  |  |  |
|               |            |      |      |       |  |  |  |

|               | Vorlesungen          |   |  |  |  |  |
|---------------|----------------------|---|--|--|--|--|
| <u>VorlNr</u> | <u>VorlNr</u> Titel  |   |  |  |  |  |
| 5001          | Grundzüge            | 4 |  |  |  |  |
| 5041          | Ethik                | 4 |  |  |  |  |
| 5043          | Erkenntnistheorie    | 3 |  |  |  |  |
| 5049          | Mäeutik              | 2 |  |  |  |  |
| 4052          | Logik                | 4 |  |  |  |  |
| 5052          | Wissenschaftstheorie | 3 |  |  |  |  |
| 5022          | Glaube und Wissen    | 2 |  |  |  |  |
|               |                      |   |  |  |  |  |

- Update-Anomalie: Was passiert wenn Sokrates umzieht?
- Lösch-Anomalie: Was passiert wenn "Glaube und Wissen" wegfällt?
- Einfüge-Anomalie: Curie forscht nur und liest keine Vorlesung.

# verieinerung des relationalen Schemas

Vorsicht: So geht es NICHT!! --> Anomalien

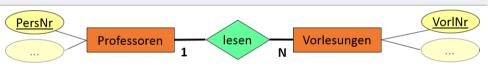
|      | Name Rang Raum VorINr Titel |    |     |      |                      |     |      |  |
|------|-----------------------------|----|-----|------|----------------------|-----|------|--|
|      | Sokrates                    | C4 |     | 5001 | Grundzüge            | 4   | 2137 |  |
| 2126 | Russel                      | C4 |     | 5041 | Ethik                | -4  | 2125 |  |
|      | Kopernikus                  |    | 310 | 5043 | Erkenntnistheorie    | 3   | 2126 |  |
|      | Popper                      |    |     | 5049 | Māeutik              |     | 2125 |  |
| 2134 | Augustinus                  |    | 309 | 4052 | Logik                | - 4 | 2125 |  |
| 2136 | Curie                       | C4 | 36  | 5052 | Wissenschaftstheorie | - 3 | 2126 |  |
|      | Kant                        | C4 |     |      |                      |     |      |  |

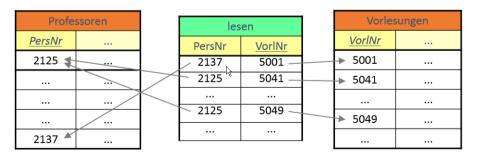
| Professoren   |            |      |      |                   |  |  |  |  |
|---------------|------------|------|------|-------------------|--|--|--|--|
| <u>PersNr</u> | Name       | Rang | Raum | liest             |  |  |  |  |
| 2125          | Sokrates   | C4   | 226  | 5041              |  |  |  |  |
| 2125          | Sokrates   | C4   | 226  | 5049              |  |  |  |  |
| 2125          | Sokrates   | C4   | 226  | 4052              |  |  |  |  |
|               |            |      |      |                   |  |  |  |  |
| 2134          | Augustinus | С3   | 309  | 5022 <sub>0</sub> |  |  |  |  |
| 2136          | Curie      | C4   | 36   | ???               |  |  |  |  |
|               |            |      |      |                   |  |  |  |  |

|               | Vorlesungen          |   |  |  |  |  |  |
|---------------|----------------------|---|--|--|--|--|--|
| <u>VorlNr</u> | <u>VorlNr</u> Titel  |   |  |  |  |  |  |
| 5001          | Grundzüge            | 4 |  |  |  |  |  |
| 5041          | Ethik                | 4 |  |  |  |  |  |
| 5043          | Erkenntnistheorie    | 3 |  |  |  |  |  |
| 5049          | Mäeutik              | 2 |  |  |  |  |  |
| 4052          | Logik                | 4 |  |  |  |  |  |
| 5052          | Wissenschaftstheorie | 3 |  |  |  |  |  |
| 5022          | Glaube und Wissen    | 2 |  |  |  |  |  |
|               |                      |   |  |  |  |  |  |

- Update-Anomalie: Was passiert wenn Sokrates umzieht?
- Lösch-Anomalie: Was passiert wenn "Glaube und Wissen" wegfällt?
- Einfüge-Anomalie: Curie forscht nur und liest keine Vorlesung.

# beziehungen unseres Beispiel-Schemas





| Profes        | ssoren |            | les    | lesen  |  | Vorles        | sungen |
|---------------|--------|------------|--------|--------|--|---------------|--------|
| <u>PersNr</u> |        |            | PersNr | VorlNr |  | <u>VorlNr</u> |        |
| 2125 🤹        | ::     |            | 2137   | 5001 — |  | <b>→</b> 5001 |        |
| 🍃             | ]      | $\nearrow$ | 2125   | 5041 — |  | <b>→</b> 5041 |        |
|               |        |            |        | h      |  |               |        |
|               | /      |            | 2125   | 5049 — |  | <b>→</b> 5049 |        |
| 2137 🚩        |        |            |        |        |  |               |        |



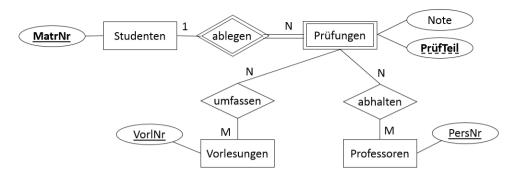
#### Nur das ist der Primärschlüssel von lesen!!! Der zugehörige Prof ist durch 1:N bereits eindeutig bestimmt

## beziehungen unseres Beispiel-Schemas








#### Nur das ist der Primärschlüssel von lesen!!! Der zugehörige Prof ist durch 1:N bereits eindeutig bestimmt

# Relationale Modellierung schwacher Entitytypen

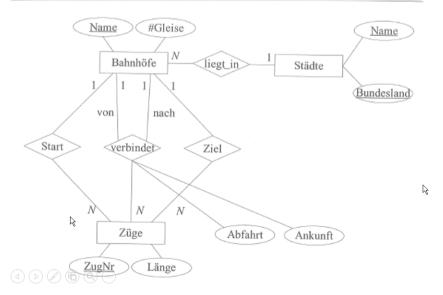
#### 

Prüfungen: {[MatrNr: integer, PrüfTeil: string, Note: integer]}

# Relationale Modellierung schwacher Entitytypen



Prüfungen: {[MatrNr: integer, PrüfTeil: string, Note: integer]}
umfassen: {[MatrNr: integer, PrüfTeil: string, VorlNr: integer]}
abhalten: {[MatrNr: integer, PrüfTeil: string, PersNr: integer]}



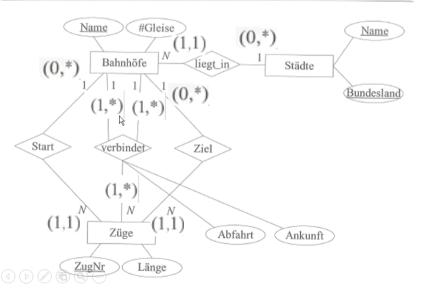



#### Aufgabe 3.1

Gegeben sei die ER-Modellierung von Zugverbindungen in Abbildung 3.1.

a) Fügen Sie bei den Beziehungen Kardinalitäten in der (min, max)-Notation hinzu.






#### **E**

#### Aufgabe 3.1

Gegeben sei die ER-Modellierung von Zugverbindungen in Abbildung 3.1.

a) Fügen Sie bei den Beziehungen Kardinalitäten in der (min, max)-Notation hinzu.





b) Übertragen Sie das ER-Modell in ein relationales Schema.

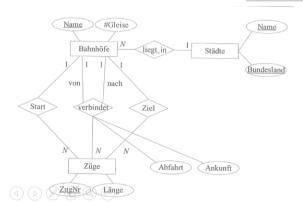
Die initiale Überführung ergibt folgende Relationen für die Entitytypen:

Städte : {[Name : string, Bundesland : string]}





 verfeinern Sie das relationale Schema soweit möglich durch Eliminierung von Relationen.


Städte: {[Name: string, Bundesland: string]} (1)
Bahnhöfe: {[Name: string, #Gleise: integer]} (2)

Züge : {[ZugNr : integer, Länge : integer]}

liegt\_in : {[BName : string, SName : string, Bundesland : string]} (4)
Start : {[ZugNr : integer, BName : string]} (5)

Ziel: {[ZugNr: integer, BName: string]} (5)

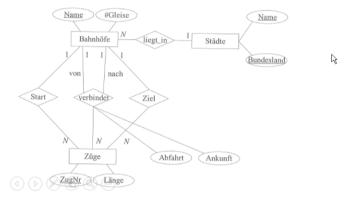
verbindet : {[VonBahnhof : string, NachBahnhof : string, ZugNr : integer, Abfahrt : date, Ankunft : date]}



**E** 

c) Verfeinern Sie das relationale Schema soweit möglich durch Eliminierung von Rela-

Städte: {[Name: string, Bundesland: string]} (1)
Bahnhöfe: {[Name: string, #Gleise: integer]} (2)


Züge : {[ZugNr : integer, Länge : integer]}

 $liegt\_in \ : \ \{ [\underline{BName} : string, SName : string, Bundesland : string] \} \eqno(4)$ 

Start : {[ZugNr : integer, BName : string]}
Ziel : {[ZugNr : integer, BName : string]}

Ziel: {[ZugNr:integer, BName: string]} (6)
verbindet: {[VonBahnhof: string, NachBahnhof: string, (7)

ZugNr : integer, Abfahrt : date, Ankunft : date]}



(3)

(5)

94

(3)

(7)

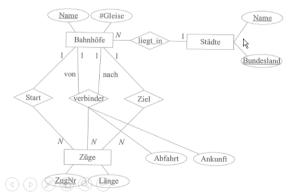
**E** 

 verfeinern Sie das relationale Schema soweit möglich durch Eliminierung von Relationen.

Städte: {[Name: string, Bundesland: string]} (1)

 $Bahnh\"{o}fe \ : \ \{ \underline{[Name:string,\#Gleise:integer]} \} \tag{2}$ 

Züge: {[ZugNr:integer, Länge:integer]}


 $liegt\_in \ : \ \{ \underline{[BName:string, SName:string, Bundesland:string]} \} \eqno(4)$ 

Start : {[ZugNr : integer, BName : string]} (5)

 $Ziel : \{ [ZugNr : integer, BName : string] \}$  (6)

verbindet : {[VonBahnhof : string, NachBahnhof : string,

ZugNr : integer, Abfahrt : date, Ankunft : date]}



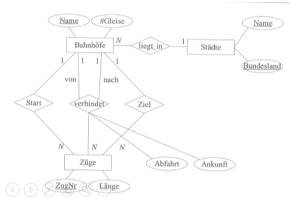
(3)

(7)



c) Verfeinern Sie das relationale Schema soweit möglich durch Eliminierung von Rela-

Städte: {[Name: string, Bundesland: string]} (1) Bahnhöfe: {[Name: string, #Gleise: integer]} (2) (3)


Züge: {[ZugNr: integer, Länge: integer]}

liegt\_in : {[BName : string, SName : string, Bundesland : string]} (4) Start : { [ZugNr : integer, BName : string] } (5)

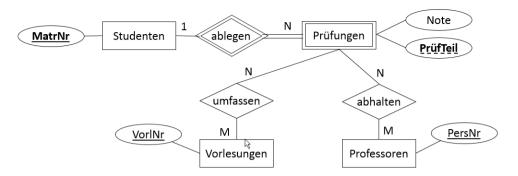
: {[ZugNr : integer, BName : string]}

verbindet : {[VonBahnhof : string, NachBahnhof : string,

ZugNr : integer, Abfahrt : date, Ankunft : date]}



# Die relationale Algebra


#### minimale Algebra

- σ Selektion
- π Projektion
- x Kreuzprodukt
- ρ Umbenennung
- ∨ Vereinigung
- Mengendifferenz

#### syntaktischer Zucker

- + Division
- ⋈ Join (@rbund)
- ⋈ äußerer Join
- ⋉ Semi-Join (rechter)
- ⋈ linker äußerer Join
- ⋈ rechter äußerer Join

# Relationale Modellierung schwacher Entitytypen



Prüfungen: {[MatrNr: integer, PrüfTeil: string, Note: integer]}

umfassen: {[MatrNr: integer, PrüfTeil: string, VorlNr: integer]}

abhalten: {[MatrNr: integer, PrüfTeil: string, PersNr: integer]}

79

(2)

(3)

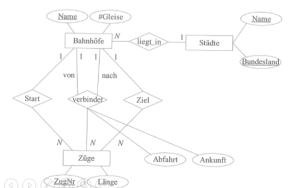
**E** 

(6)

(7)

c) Verfeinern Sie das relationale Schema soweit möglich durch Eliminierung von Relationen.

{[Name : string, Bundesland : string]} (1)


Bahnhöfe: {[Name: string, #Gleise: integer]} Züge: {[ZugNr:integer, Länge:integer]}

liegt\_in : {[BName : string, SName : string, Bundesland : string]} (4)

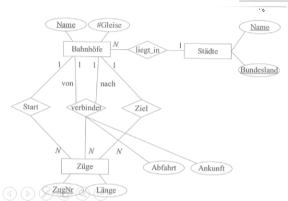
Start : {[ZugNr : integer, BName : string]} (5)

Ziel: {[ZugNr: integer, BName: string]} (6) verbindet : { [VonBahnhof : string, NachBahnhof : string, (7)

ZugNr : integer, Abfahrt : date, Ankunft : date }

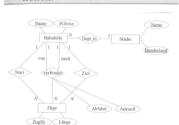


Städte: {[Name: string, Bundesland: string]} (1)
Bahnhöfe: {[Name: string, #Gleise: integer]} (2)


Züge: {[ZugNr:integer, Länge:integer]}

 $liegt\_in \ : \ \{ \underline{[BName:string}, SName:string, Bundesland:string] \} \eqno(4)$ 

Start : {[ZugNr : integer, BName : string]} (5)
Ziel : {[ZugNr : integer, BName : string]} (6)


 $verbindet \ : \ \{[\underline{VonBahnhof}: string, NachBahnhof: string,$ 

ZugNr : integer, Abfahrt : date, Ankunft : date]} &





 verfeinern Sie das relationale Schema soweit möglich durch Eliminierung von Relationen.



Städte: {[Name: string, Bundesland: string]} (1)
Bahnhöfe: {[Name: string, #Gleise: integer]} (2)
Züge: {[ZugNr: integer, Länge: integer]} (3)

liegt\_in : {[BName : string, SName : string, Bundesland : string]} (4)

Start : {[ZugNr : integer, BName : string]} (5)

Ziel : {[ZugNr : integer, BName : string]} (6)

 $\label{eq:continuous} \begin{array}{ll} verbindet \ : \ \{[VonBahnhof: string, NachBahnhof: string, \\ & ZugNr: integer, Abfahrt: date, Ankunft: date]\} \end{array}$ 

$$(4) \mapsto (2), (5) \mapsto (3), (6) \mapsto (3)$$

Damit ergibt sich folgendes Schema:

Städte : {[Name : string, Bundesland : string]}

Bahnhöfe : {[Name : string, #Gleise : integer,

SName: string, Bundesland: string]}

Züge: {[ZugNr: integer, Länge: integer,

StartBahnhof: string, ZielBahnhof: string]}

verbindet : {[VonBahnhof : string, NachBahnhof : string,

ZugNr: integer, Abfahrt: date, Ankunft: date]}

**E** 

(3)

(7)

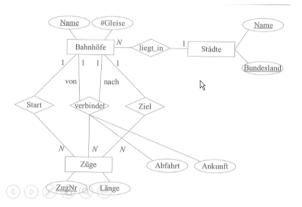
(7)

95

 verfeinern Sie das relationale Schema soweit möglich durch Eliminierung von Relationen

 $St\"{a}dte \; : \; \{ [\underline{Name: string}, Bundesland: string] \} \tag{1}$ 

Bahnhöfe :  $\{[\underline{\text{Name : string}}, \#\text{Gleise : integer}]\}$  (2)


Züge : {[ZugNr : integer, Länge : integer]} (3)

liegt\_in : {[BName : string, SName : string, Bundesland : string]} (4)

Start :  $\{[\underline{ZugNr} : \underline{integer}, BName : string]\}$  (5)

Ziel: {[ZugNr:integer, BName: string]} (6)
verbindet: {[VonBahnhof: string, NachBahnhof: string, (7)

ZugNr : integer, Abfahrt : date, Ankunft : date]



94

## Seiektion

 $\sigma_P$ : E  $\rightarrow_{k}$  E' mit P: Prädikat, E: Relation (Tabelle), E': Relation (Tabelle):

σ<sub>P</sub> (E) wählt alle Tupel (Zeilen) aus E aus, die P erfüllen. Ergebnis: Relation (Tabelle) E'

#### Beispiel: $\sigma_{Semester > 10}$ (Studenten)

|           |              |          | _                          |        |                                 |
|-----------|--------------|----------|----------------------------|--------|---------------------------------|
| Studenten |              |          |                            |        |                                 |
| MatrNr    | Name         | Semester |                            |        | $\sigma_{\text{Semester} > 10}$ |
| 24002     | Xenokrates   | 18       |                            |        |                                 |
| 25403     | Jonas        | 12       | σ <sub>Semester</sub> > 10 | MatrNr | Name                            |
| 26120     | Fichte       | 10       | <b>→</b>                   | 24002  | Xenokrat                        |
| 26830     | Aristoxenos  | 8        |                            | 25403  | Jonas                           |
| 27550     | Schopenhauer | 6        |                            |        |                                 |
| 28106     | Carnap       | 3        |                            |        |                                 |
| 29120     | Theophrastos | 2        |                            |        |                                 |
| 29555     | Feuerbach    | 2        |                            |        |                                 |

 σ<sub>Semester > 10</sub> (Studenten)

 MatrNr
 Name
 Semester

 24002
 Xenokrates
 18

 25403
 Jonas
 12



 $\sigma_P: E \rightarrow E'$  mit P: Prädikat, E: Relation (Tabelle), E': Relation (Tabelle):

σ<sub>P</sub> (E) wählt alle Tupel (Zeilen) aus E aus, die P erfüllen. Ergebnis: Relation (Tabelle) E'

Beispiel:  $\sigma_{Semester > 10}$  (Studenten)

|        | Studenten    |          |                            |        |                                             |          |  |  |
|--------|--------------|----------|----------------------------|--------|---------------------------------------------|----------|--|--|
| MatrNr | Name         | Semester |                            |        | $\sigma_{\text{Semester} > 10}$ (Studenten) |          |  |  |
| 24002  | Xenokrates   | 18       |                            |        |                                             |          |  |  |
| 25403  | Jonas        | 12       | σ <sub>Semester</sub> > 10 | MatrNr | Name                                        | Semester |  |  |
| 26120  | Fichte       | 10       | <b></b>                    | 24002  | Xenokrates                                  | 18       |  |  |
| 26830  | Aristoxenos  | 8        |                            | 25403  | Jonas                                       | 12       |  |  |
| 27550  | Schopenhauer | 6        |                            |        |                                             |          |  |  |
| 28106  | Carnap       | 3        |                            |        |                                             |          |  |  |
| 29120  | Theophrastos | 2        |                            |        |                                             |          |  |  |
| 29555  | Feuerbach    | 2        |                            |        |                                             |          |  |  |



 $\sigma_P: E \to E'$  mit P: Prädikat, E: Relation (Tabelle), E': Relation (Tabelle):

 $\sigma_P$  (E) wählt alle Tupel (Zeilen) aus E aus, die P erfüllen. Ergebnis: Relation (Tabelle) E'

Beispiel:  $\sigma_{Semester > 10}$  (Studenten)

|        | Studenten    |          |                            | σ <sub>Semester &gt; 10</sub> (Studenten) |            |          |  |
|--------|--------------|----------|----------------------------|-------------------------------------------|------------|----------|--|
| MatrNr | Name         | Semester |                            |                                           |            |          |  |
| 24002  | Xenokrates   | 18       |                            | 24 . 21                                   |            |          |  |
| 25403  | Jonas        | 12       | σ <sub>Semester</sub> > 10 | MatrNr                                    | Name       | Semester |  |
| 26120  | Fichte       | 10       | <b></b>                    | 24002                                     | Xenokrates | 18       |  |
| 26830  | Aristoxenos  | 8        |                            | 25403                                     | Jonas      | 12       |  |
| 27550  | Schopenhauer | 6        |                            |                                           |            |          |  |
| 28106  | Carnap       | 3        |                            |                                           | R          |          |  |
| 29120  | Theophrastos | 2        |                            |                                           |            |          |  |
| 29555  | Feuerbach    | 2        |                            |                                           |            |          |  |



 $\sigma_P: E \rightarrow E'$  mit P: Prädikat, E: Relation (Tabelle), E': Relation (Tabelle):

σ<sub>P</sub> (E) wählt alle Tupel (Zeilen) aus E aus, die P erfüllen. Ergebnis: Relation (Tabelle) E'

Beispiel:  $\sigma_{Semester > 10}$  (Studenten)

|        | Studenten    |          |                               |                                             |            |           |  |
|--------|--------------|----------|-------------------------------|---------------------------------------------|------------|-----------|--|
| MatrNr | Name         | Semester |                               | $\sigma_{\text{Semester} > 10}$ (Studenten) |            |           |  |
| 24002  | Xenokrates   | 18       |                               | N do to N los                               | Name       | Compostor |  |
| 25403  | Jonas        | 12       | σ <sub>Semester &gt; 10</sub> | MatrNr                                      | Name       | Semester  |  |
| 26120  | Fichte       | 10       | <b></b>                       | 24002                                       | Xenokrates | 18        |  |
| 26830  | Aristoxenos  | 8        |                               | 25403                                       | Jonas      | 12        |  |
| 27550  | Schopenhauer | 6        |                               |                                             |            |           |  |
| 28106  | Carnap       | 3        |                               |                                             |            |           |  |
| 29120  | Theophrastos | 2        |                               |                                             |            |           |  |
| 29555  | Feuerbach    | 2        |                               |                                             |            |           |  |

Seiektion

98

 $\sigma_P: E \to E'$  mit P: Prädikat, E: Relation (Tabelle), E': Relation (Tabelle):

σ<sub>P</sub> (E) wählt alle Tupel (Zeilen) aus E aus, die P erfüllen. Ergebnis: Relation (Tabelle) E'

Beispiel:  $\sigma_{Semester > 10}$  (Studenten)

|        |              |          |                            |                 |                                       | N        |  |
|--------|--------------|----------|----------------------------|-----------------|---------------------------------------|----------|--|
|        | Studenten    |          |                            | <i>\\</i> {\\}  |                                       |          |  |
| MatrNr | Name         | Semester |                            |                 | $\sigma_{\text{Semester} > 10}$ (Stud | enten)   |  |
| 24002  | Xenokrates   | 18       |                            | N A - t - N I - | Nieren                                | C        |  |
| 25403  | Jonas        | 12       | σ <sub>Semester</sub> > 10 | MatrNr          | Name                                  | Semester |  |
| 26120  | Fichte       | 10       |                            | 24002           | Xenokrates                            | 18       |  |
| 26830  | Aristoxenos  | 8        |                            | 25403           | Jonas                                 | 12       |  |
| 27550  | Schopenhauer | 6        |                            |                 |                                       |          |  |
| 28106  | Carnap       | 3        | 1                          |                 |                                       |          |  |
| 29120  | Theophrastos | 2        |                            |                 |                                       |          |  |
| 29555  | Feuerbach    | 2        |                            |                 |                                       |          |  |



 $\sigma_P: E \to E'$  mit P: Prädikat, E: Relation (Tabelle), E': Relation (Tabelle):

σ<sub>P</sub> (E) wählt alle Tupel (Zeilen) aus E aus, die P erfüllen. Ergebnis: Relation (Tabelle) E'

Beispiel:  $\sigma_{\text{Semester}} > 10$  (Studenten)

|        | Studenten    |    |  |  |  |  |
|--------|--------------|----|--|--|--|--|
| MatrNr | MatrNr Name  |    |  |  |  |  |
| 24002  | Xenokrates   | 18 |  |  |  |  |
| 25403  | Jonas        | 12 |  |  |  |  |
| 26120  | Fichte       | 10 |  |  |  |  |
| 26830  | Aristoxenos  | 8  |  |  |  |  |
| 27550  | Schopenhauer | 6  |  |  |  |  |
| 28106  | Carnap       | 3  |  |  |  |  |
| 29120  | Theophrastos | 2  |  |  |  |  |
| 29555  | Feuerbach    | 2  |  |  |  |  |

| 1                          | $\sigma_{\text{Semester} > 10}$ (Studenten) |            |          |  |  |
|----------------------------|---------------------------------------------|------------|----------|--|--|
| σ <sub>Semester</sub> > 10 | MatrNr Name                                 |            | Semester |  |  |
| - Schicater > 10           | 24002                                       | Xenokrates | 18       |  |  |
|                            | 25403                                       | Jonas      | 12       |  |  |

## Narcesisches Produkt

#### Beispiel: E' = Professoren x hören

| Professoren |          |      |      |  |  |  |
|-------------|----------|------|------|--|--|--|
| PersNr      | Name     | Rang | Raum |  |  |  |
| 2125        | Sokrates | C4   | 226  |  |  |  |
| 2126        | Russel   | C4   | 232  |  |  |  |
|             |          |      |      |  |  |  |
|             |          |      |      |  |  |  |
| 2137        | Kant     | C4   | 7    |  |  |  |

|   | hören  |        |  |  |  |
|---|--------|--------|--|--|--|
|   | MatrNr | VorlNr |  |  |  |
| х | 26120  | 5001   |  |  |  |
| ^ | 27550  | 5001   |  |  |  |
|   |        |        |  |  |  |
|   |        |        |  |  |  |
|   |        |        |  |  |  |
|   |        |        |  |  |  |
|   | 25403  | 5022   |  |  |  |

|   | E'= Professoren x hören |          |      |      |        |        |  |  |
|---|-------------------------|----------|------|------|--------|--------|--|--|
|   | PersNr                  | Name     | Rang | Raum | MatrNr | VorlNr |  |  |
| _ | 2125                    | Sokrates | C4   | 226  | 26120  | 5001   |  |  |
|   | 2125                    | Sokrates | C4   | 226  | 27550  | 5001   |  |  |
|   |                         |          |      |      |        |        |  |  |
|   | 2125                    | Sokrates | C4   | 226  | 25403  | 5022   |  |  |
|   | 2126                    | Russel   | C4   | 232  | 26120  | 5001   |  |  |
|   |                         |          |      |      |        |        |  |  |
|   | 2126                    | Russel   | C4   | 232  | 25403  | 5022   |  |  |
|   |                         |          |      |      |        |        |  |  |
|   | 2137                    | Kant     | C4   | 7    | 25403  | 5022   |  |  |

- Problem: riesige Ergebnisse (im Bsp. |E'| = |Prof.| \* |hören| = 7 \* 12 )
- "bessere" Operation: Join (siehe weiter unten)



Das **Selektionsprädikat** P in  $\sigma_P$  (E) ist eine Formel, die zu wahr oder falsch ausgewertet werden kann und die aufgebaut ist aus:

- Attributnamen der Argumentrelation E
- Konstanten
- den arithmetischen Vergleichsoperatoren =, <, ≤, >, ≥, ≠
- den logischen Operatoren ∧ (und), ∨ (oder) und ¬ (nicht)

P wird auf allen  $e \in E$  ausgewertet. Wenn P(e) = wahr dann wird e in die Ergebnisrelation E' aufgenommen.



q

### ivolationen

• sch(E): die Menge aller Attribute von E

Bsp.: sch(Professoren) = {PersNr, Name, Rang, Raum}

• E.A: Qualifizierter Name des Attributs A in Relation (Tabelle) E

Bsp.: Professoren.PersNr, Assistenten.PersNr

| Professoren |      |      |      |  |  |  |
|-------------|------|------|------|--|--|--|
| PersNr      | Name | Rang | Raum |  |  |  |
|             |      |      |      |  |  |  |



| Professoren x Assistenten                                                                                       |  |  |  |  |  |      |  |
|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|------|--|
| Professoren.PersNr   Professoren.Name   Rang   Raum   Assistenten.PersNr   Assistenten.Name   Fachgebiet   Boss |  |  |  |  |  | Boss |  |
|                                                                                                                 |  |  |  |  |  |      |  |



• sch(E): die Menge aller Attribute von E

Bsp.: sch(Professoren) = {PersNr, Name, Rang, Raum}

• E.A: Qualifizierter Name des Attributs A in Relation (Tabelle) E

Bsp.: Professoren.PersNr, Assistenten.PersNr

Χ

| Professoren |      |           |  |  |  |  |
|-------------|------|-----------|--|--|--|--|
| PersNr      | Name | Rang Raun |  |  |  |  |
|             |      |           |  |  |  |  |

| Assistenten |      |            |      |  |
|-------------|------|------------|------|--|
| PersNr      | Name | Fachgebiet | Boss |  |
|             |      |            |      |  |

| Professoren x Assistenten |                  |      |      |                    |                  |            |      |  |  |  |
|---------------------------|------------------|------|------|--------------------|------------------|------------|------|--|--|--|
| Professoren.PersNr        | Professoren.Name | Rang | Raum | Assistenten.PersNr | Assistenten.Name | Fachgebiet | Boss |  |  |  |
|                           |                  |      |      |                    |                  |            |      |  |  |  |

