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Person Detection from Audio

“‘Speaker Diarization / Segmentation: given multi-party audio data (possibly
with background noise):
- who talks when?

° Typically 3 steps:
--segmentation into speech / non-speech
--detection of speaker transitions
--clustering of speaker segments (+ classification of speaker )

° Segmentation into speech / non-speech:
-- Generate features:

++ digital signal (pre-) processing
(involving e.g. sub-division signal into overlapping samples of
typically several ms, Fourier-transform etc.)

++ MEL filters - MEL cepstrum coefficients

++ Further Fourier- and other transformations

++ additional features: zero-crossing rates, energy statistics etc.
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Person Detection from Video

® Clustering of segments:
-- e.g. use hierarchial bottom up clustering:
merge segments with most similar models (e.g. Gaussians);
cut dendrogram at maximum total likelihood i

N

® Numerous systems integrate or split several of the
aforementioned steps or use other ML techniques (DBN approaches
etc.) = difficult business ©

@
Person Detection from Video

i

® First step: Face detection
i

® Naive apprach: simple pixel based binary classifier.
Problem: too many possibilities for non-faces

® Other approaches:

® detect correct relatively positioned patches of skin, eyes or other
face elements. Advantage; relatively robust against rotations

'Approach [6]: Use special features instead of pixels (advantage:
domain knowledge can be encoded into features), Intelligent feature
selection / combination of simple binary classifiers that work on
single features (AdaBoost)

® (optional second step: face recognition(e.g. via Eigenfaces (via PCA) [9])
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® First step: Face detection ® Human figure detection: .
® Naive apprach: simple pixel based binary classifier. ® Main problem: too many options (clothes, accessoires)—> pixels as
Problem: too many possibilities for non-faces features won't work
® Other approaches: ° Approaches:
® detect correct relatively positioned patches of skin, eyes or other ® features: histograms of directions of detected edges

face elements. Advantage; relatively robust against rotations

'Approach [6]: Use special features instead of pixels (advantage:
domain knowledge can be encoded into features), Intelligent feature
selection / combination of simple binary classifiers that work on
single features (AdaBoost)

® (optional second step: face recoggition(e.g. via Eigenfaces (via PCA) [5]) Fig, 5. pmp detection. Exﬂmpl of pecple detection in public spaces (pictures
from [216]). M
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Person Detection from Video Detecting Social Signals: Gestures and Posture
® Human figure detection: ® Gestures:
& --not many studies yet interpreting them as social signals
® Main problem: toc many options (clothes, accessoires)—> pixels as --several studies: gestures as means of input

(special example: touch interfaces)

features won‘t work
--other study: automatic interpretation of sign language

¢ Approaches:
® Gesture recognition: main challenges:

® features: histograms of directions of detected edges --detecting gesture-relevant body parts: select feature spaces, e.g. via
++histograms of oriented gradients
++etc.
--modeling temporal dynamic e.g. using:
++Hidden Markov Models (HMMs)
++Conditional Random Fields (CRFs)
++Dynamic Time Warping (DTW)
++etc.

Fig, 8. People detection. Examples of people detection in public spaces (pictures
from [216]). 11
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® Gestures:
--not many studies yet interpreting them as social signals
--several studies: gestures as means of input
(special example: touch interfaces)
--other study: automatic interpretation of sign language

® Gesture recognition: main challenges:

--detecting gesture-relevant body parts: select feature spaces, e.g. via
++histograms of oriented gradients
++etc.

-—-modeling temporal dynamic e.g. using:
++Hidden Markov Models (HMMSs)
++Conditional Random Fields (CRFs)
++Dynamic Time Warping (DTW)
++etc.

CIEN
Detecting Social Signals: Gaze and Face

® Features for facial
expression recognition:

° geometric
(shapes of facial
components,
locations of focal
points etc.)

° appearance (skin
texture in different
areas)

neutral apex

onset

Fig. 9. AU detection. Outline of a geometric-feature-based system for detection of
facial AUs and their temporal phases (onset, apex, offset, neutral) proposed in [196].

[11

@,
Detecting Social Signals: Gaze and Face

® AU: smallest discernable temporal feature sequence: sequence of
geometry or appearance features (modeled e.g. via Dynamic Bayesian
Networks (DBN))

® Detection: example: basic integrative methods based on optical flow on
detected faces:
--optical flow: motion pattern of picture elements (e.g. pixels):
represented by vector field of velocity V(x,y,t) of intensity:

I(x+dx,y+dy,t+dt)= I(x,y,r)+6—fdx+a—fdy+a—IdI+O(d2)
Ox ay ot

gV +gV.+g:0

ax oy Y ar (optical flow equation)

use numeric methods to compute solutions
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Detecting Social Signals: From Audio Detecting Social Signals: From Audio
® Vocal features: up to now: mostly investigated for speech detection ® Vocal features: up to now: mostly investigated for speech detection
¢ Prosody: pitch, tempo, energy ¢ Prosody: pitch, tempo, energy
—-pitch: first fundamental frequency (1%t maximum in Fourier --pitch: first fundamental frequency (1%t maximum in Fourier
transform (e.g. 30ms frames) transform (e.g. 30ms frames) &
—-tempo: vowels / sec. ; vowel: phonetically relevant unit --tempo: vowels / sec. ; vowel: phonetically relevant unit
; . . ) ks
-—energy E of signal s(t): g - Z-S(t")z --energy E of signal s(t): g — Z.S(G)Z
® Few efforts so far in analysis of non-linguistic vocalizations ® Few efforts so far in analysis of non-linguistic vocalizations
-—-example: laughter detection (e.g. via SVMs) --example: laughter detection (e.g. via SVMSs)
and linguistic vocalizations and linguistic vocalizations
® silence detection: e.g. via energy as feature (often as by-product of ® silence detection: e.g. via energy as feature (often as by-product of
speaker diarization) speaker diarization)
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Applications

® Important issue: behavioral cues can have different meaning if
happening in different outer contexts

° Example: temporal dynamics of behavioral cues / social signals (e.g.
relative person—person timing, person-environment timing etc.)

® Other important issue: multi-modal combination / fusion of social signals
(e.g. audio and interaction geometry) N

[HREN

Applications

® Predict outcome of dyadic interaction (selling, dating etc.) via audigyand
derived via social signals such as
--activity (via energy),
--influence (via stat. analysis of influence of A's speaking patterns
on B's speaking patterns)
--consistency (stability of person’s speaking patterns)
--mimicry (mirroring)

¢ Eigenbehaviors (via PCA on features such as location, co-presence
etc))

¢ Analyzing interactions in small groups (e.g. meetings), role structures
and detection of user interest via audio and video:
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® Interactions in small groups: dominance of persons, recognition of
collective actions

° recognition of roles and extraction of small social networks (e.g. via
analyzing meetings or broadcast TV shows)

° analyze reaction of users to embodied conversational agents (ECAs)

®‘ pplied Informatics /

AICOS Technische Universitét MUncm

& Cooperative Systems

Social Situation Models as Models of Social Context

Social Situation: }

Co-located social interaction |
with full mutual awareness

Simplified Social Situation Model: J

{ad2233)
® Participating persons: P: set of IDs f
® Spatio-temporal reference: X: sub-set of E x B3

® > s=(PX)

3/25
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Social Situation:

Co-located social interaction
with full mutual awareness

Simplified Social Situation Model: N

® Participating persons: P: set of IDs
® Spatio-temporal reference: X: sub-set of R x E2

> S=(P,X) &
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Social Situation detection

® Example: microphone = audio-signals = speaker
diarization = set of interacting persons

® Example: gyroscope, accelerometer, ultrasound-s. >
relative body distance & orientation - set of interacting
persons

Social Situation understanding

® Example: microphone = audio—signqgs -> analysis of
prosody = emotion detection - model of state of mind
of person(s)

®% pplied Informatics /
& Cooperative Systems

AICOS
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Detecting Social Situations: Mobile Social Signal Processing

Social Situation detection

® Example: microphone = audio-signals = speaker
diarization = set of interacting persons

® Example: gyroscope, accelerometer, ultrasound-s. -
relative body distance & orientation - set of interacting
persons

Social Situation understanding

® Example: microphone - audio-signals = analysis of

Geometry of Social Interaction

Interpersonal distances

® Hall: ~general quality“ of social relation
- 4 personal zones

® Other influences (?):
social context:
architectural environment (socio-petal,
socio-fugal forces (Watson)), density,
gender, efc.
individual context:
culture, age, self-esteem, disabilities,

prosody - emotion detection - model of state of mind Body angles
of person(s) I
® . .
5/18 Kendon: F—Iéormatlons [8] 6/18
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Research Questions Experiment

® Method for measuring human social interaction geometry (mobile
- live ; experiment = sociology model)

® General, quantitative, algorithmically processable model for
human social interaction geometry .

® Use of model to detect Social Situations (e.g. from mobile device
measurements)

® Use as social context for applications maintaining privacy

7/18
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Experiment Model for Human Social Int. Geometry: Function p(96, dd)

@i‘ pplied Ir)fonnaticsl m
gfg’ggmve Systems Technische Universitat Miinc|

® |dea: Reduce n-ary social interaction to binary;
infer n-ary by graph clustering [N

® Binary: p(86, dd)

® 5d(t) = £ |Pry s1(t) — Pry s2(t)]
® 00 = 0. (Ruo(®) = 0. ((Ba(0) (Ra()")

® Optional: p(d6, dd, dd)

9/18
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Model for Human Social Int. Geometry: Function p(66, dd)

® |dea: Reduce n-ary social interaction to binary;
infer n-ary by graph clustering

® Binary: p(36, d)

® §d(t) = £ | Py s1(t) — Pry s2(t)]
® a00) = 0 (Faa(1) = 0. ((Ra() (Ra(t))")

® optional: p(d6, dd, od)

9/18

Results

Experiment data: Manual annotation

| S| = 321307 (06, dd) pairs corresponding to ,in a social situation*
| SO | = 398335 (06, dd) pairs corresponding to ,not in a social situation*
Example:

| S9

Sol)
vy
G}

10/ 18
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Experiment data: Manual annotation Experiment data: Manual annotation

| SO
| 9

321307 (00, dd) pairs corresponding to ,in a social situation® | S| = 321307 (06, dd) pairs corresponding to ,in a social situation*

398335 (06, od) pairs corresponding to ,not in a social situation® | SO | = 398335 (06, dd) pairs corresponding to ,not in a social situation*

| 9| | S®| = 4

Example: % Example: %
(8 g %
|59 =6 &9 1S9 =6 () % @
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Gaussian Mixture Model (3 Gaussians) 74,34 %
Gaussian Mixture Model (5 Gaussians) ﬁ,G? %
Gaussian Mixture Model (7 Gaussians) 74,59 %
Naive Bayes 65,45 %
Support Vector Machine (Polyn. Kernel) 77,81 %

(*) w. 10-fold cross validation
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® Foreach: complete weighted Graph G(V E,w,1) with I'=set of persons,
l}aa (595'152’ 5015132)
50'3]5-2) +po@0, , éd }

SISEJ SIS

W((5,55)) = 6030

s
5555

° Average Link Clustering of G(I/E,w,t) + Maximum Modularity
Dendrogram Cut - Partition X of V/

® Compare X with annotation X* via RANDX X} - Accuracy of
Social Situation Detection for each ¢

® Average over allt: RAND ~0.76 Adj.Rand ~0.529

15/18

® For each ¢: complete weighted Graph G(¥.E,w.t) with I’=set of persons,
};\\% (593;52’ 5d515'2)
5ds1s2) +pOso, ., ad ;

S]S;,’ 5,5

w((sy,55)) = 630

s
5,57

¢ Average Link Clustering of G(VE,w,1) + Maximum Modularity
Dendrogram Cut - Partition X of

¢ Compare X with annotation X* via RAND(XX‘) - Accuracy of
Social Situation Detection for each ¢

¢ Average over allt: RAND ~0.76 Adj.Rand ~0.529
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