Script generated by TTT

Title: groh: profile1 (09.06.2015)

Tue Jun 09 15:00:14 CEST 2015 Date:

Duration: 92:31 min

Pages: 98

Random Graph Models: Poisson Graph

- G_{n,p}: space of graphs with n nodes and
 ach of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

- G_{n n}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p

• p_k: probability that a node has degree k:
$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k \mathrm{e}^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

Random Graph Models: Poisson Graph

- G_{n p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p

• p_k: probability that a node has degree k:
$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k \mathrm{e}^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

्। Kandom Graph Models: Poisson Graph

- G_{n,p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for n → ∞ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

- G_{n,p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k \mathrm{e}^{-z}}{k!}$$

for $n \to \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) \rightarrow "Poisson random graphs"

Random Graph Models: Poisson Graph

- Given: property Q ("is connected", "has diameter xyz" etc.) of $G_{n,p}$: " $G_{n,p}$ has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3]))
- In such models $G_{n,p}$ phase transitions exist for properties Q: "threshold function" q(n) (with $q(n) \rightarrow \infty$ if $n \rightarrow \infty$) so that:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k

$$\stackrel{\triangleright}{\bullet} \to \text{u (k fixed)} == \text{u}^{\text{k}} \quad \to \quad u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$$

 $^{\bullet}$ \rightarrow fraction S of graph occupied by X is $\ S=1-u \ \rightarrow$

$$S = 1 - e^{-zS}$$

्। Kandom Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k

•
$$\rightarrow$$
 u (k fixed) == u^k $\rightarrow u = \sum_{k=0}^{\infty} p_k u^k = e^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = e^{z(u-1)}$

 $^{\bullet}$ \rightarrow fraction S of graph occupied by X is $\ S=1-u\ \Rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree ધ) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- $\stackrel{\bullet}{\rightarrow} \text{u (k fixed)} == \text{u}^{\text{k}} \quad \stackrel{}{\rightarrow} \quad u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- ullet \rightarrow fraction S of graph occupied by X is S=1-u

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k

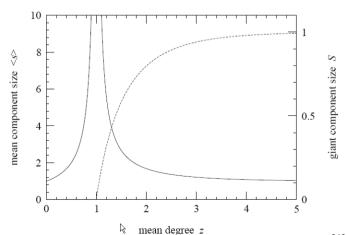
•
$$\rightarrow$$
 u (k fixed) == u^k $\rightarrow u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$

• \rightarrow fraction S of graph occupied by X is $S=1-u \rightarrow$

$$S = 1 - e^{-zS}$$

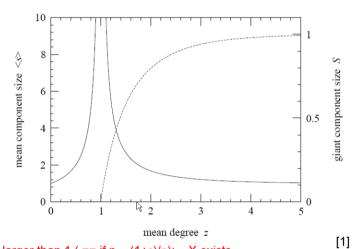
Kandom Graph Models: Poisson Graph

- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



Kandom Graph Models: Poisson Graph

- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle =$

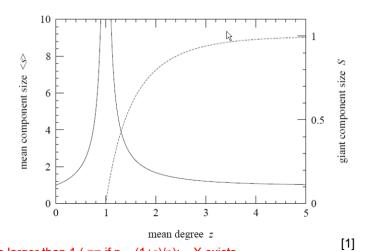


 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

→ if the av degree z is larger than 1 (== if p ~ (1+ε)/n): X exists

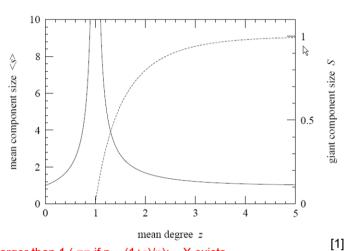
Random Graph Models: Poisson Graph

- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle =$



Random Graph Models: Poisson Graph

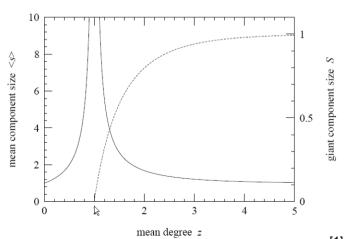
- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle =$



 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

Random Graph Models: Poisson Graph

- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

Random Graph Models: Poisson Graph

Very coarse (!!!) estimation of diameter l of $G_{n,p}$:

- average degree of nodes: z
 - → in a distance of d from a node i should be approximately z^d many nodes
 - \rightarrow if $z^d = n : d = 1$
 - $\rightarrow l \sim \log n / \log z \sim \log n$ (if z is kept constant)
- For a more exact derivation of the result see references in [1]
- We see: it is not difficult (in terms of how large must connectivity be) to achieve small diameters

Random Graph Models: Poisson Graph

Unfortunately: small *l* is the only property in congruence with real world NW:

- Clustering coefficient C⁽¹⁾ of G_{n,p}:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

	≀(real)	ℓ (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	80.0	0.005
C.elegans	2.65	2.25	0.28	0.05

Degree distribution is Poisson and not power law

Very coarse (!!!) estimation of diameter 1 of G_{n.p.}:

- average degree of nodes: z
 - → in a distance of d from a node i should be approximately z^d many nodes
 - \rightarrow if $z^d = n$: d = l
 - $\rightarrow l \sim \log n / \log z \sim \log n$ (if z is kept constant)
- For a more exact derivation of the result see references in [1]
- We see: it is not difficult (in terms of how large must connectivity be) to achieve small diameters

Random Graph Models: Poisson Graph

Unfortunately: small *l* is the only property in congruence with real world NW:

- Clustering coefficient C⁽¹⁾ of G_{nn}:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

	ℓ (real)	1 (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.08	0.005
C.elegans	2.65	2.25	0.28	0.05

[4]

Degree distribution is Poisson and not power law

Kandom Graph Models: Poisson Graph

Unfortunately: small *l* is the only property in congruence with real world NW:

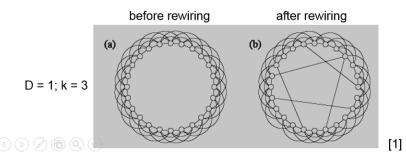
- Clustering coefficient C⁽¹⁾ of G_{n.p}:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

	/ (real)	ℓ (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.08	0.005
C.elegans	2.65	2.25	0.28	0.05

Degree distribution is Poisson and not power law

vvatts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- ◆ → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 → total number of edges = L k
 - "rewiring" of edges with probability p

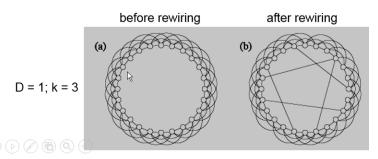


Random Graph Models: More Refined Models

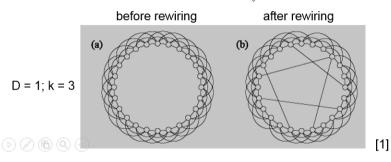
- Instead of having connection probability p as in Poisson $G_{n,p}$: demand certain degree distributions p_k (e.g. power law) \rightarrow "configuration model"
- → results are promising but still not in full congruence with real world NW
- → still many difficult open problems
- still not accounted for: transitivity (high clustering coefficient)

vvatts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 - → total number of edges = L k
 - "rewiring" of edges with probability p

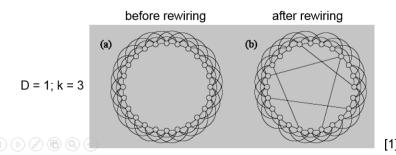


- Great problem of random graphs; high clustering coeff, / transitivity does not occur for simple models
- ◆ Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k → total number of edges = L k
 - "rewiring" of edges with probability p



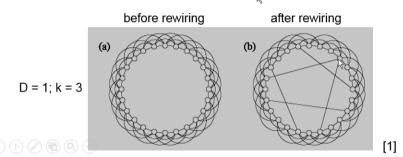
vvatts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- ◆ → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most **k** → total number of edges = L k
 - "rewiring" of edges with probability p



vvatts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 - → total number of edges = L k
 - "rewiring" of edges with probability p



vvatts Strogatz Model

- p: transition between regular lattice and sth. like a random graph: (for D=1:)
 - p=0: regular lattice:
 - C = C⁽¹⁾ = $(3k-3)/(4k-2) \rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - 1 = L / 4k for L→∞

→ no small world effect

- p=1: similar to a random graph:
 - C ~ 2k / L
- for L→∞
- → clustering coeff too small
- $l = \log L / \log k$ for $L \rightarrow \infty$
- → small world effect.

p: transition between regular lattice and sth. like a random graph: (for D=1:)

- p=0: regular lattice:
 - C = C⁽¹⁾ = (3k-3)/(4k-2) $\rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - 1 = L / 4k for L→∞ → no small world effect
- p=1: similar to a random graph:
 - C ~ 2k / L
- for L→∞
- → clustering coeff too small
- l = log L / log k for L→∞ → small world effect.

- p: transition between regular lattice and sth. like a random graph: (for D=1:)
 - p=0: regular lattice:
 - C = C⁽¹⁾ = (3k-3)/(4k-2) $\rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - l = L / 4k for L→∞ → no small world effect
 - p=1: similar to a random graph:
 - C ~ 2k / L for L→∞ → clustering coeff too small
 - $l = \log L / \log k$ for $L \rightarrow \infty$ \rightarrow small world effect.

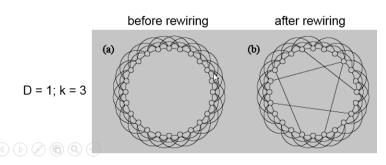
vvatts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 → total number of edges = L k
 - _ "rewiring" of edges with probability p

D = 1; k = 3

vvatts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 - → total number of edges = L k
 - _ "rewiring" of edges with probability p



p: transition between regular lattice and sth. like a random graph: (for D=1:)

• p=0: regular lattice:

• C = C⁽¹⁾ = (3k-3)/(4k-2) $\rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"

• l = L/4k for $L \rightarrow \infty$ \rightarrow no small world effect

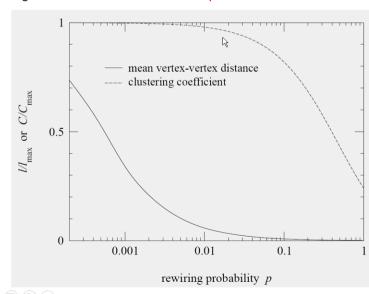
• p=1: similar to a random graph:

 $^{\bullet}$ C ~ 2k / L for L→∞ \rightarrow clustering coeff too small

• l = log L / log k for L→∞ → small world effect.

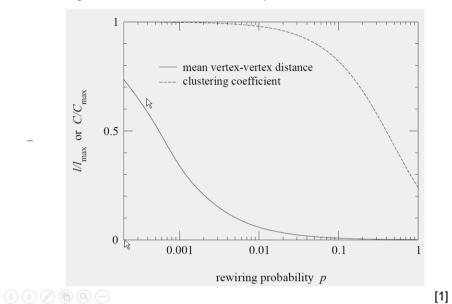
vvatts Strogatz Model

• Interesting area: intermediate values for p:



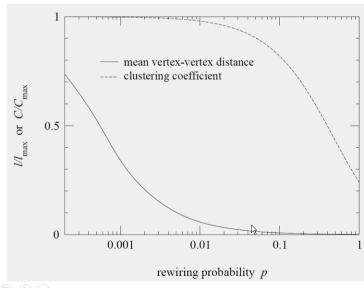
vvatts Strogatz Model

• Interesting area: intermediate values for p:



vvatts Strogatz Model

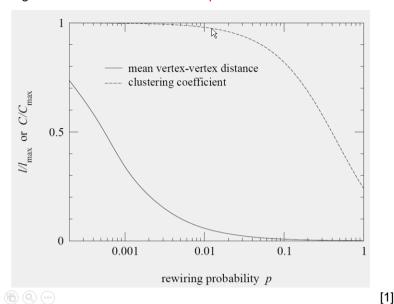
• Interesting area: intermediate values for p:



[1]

vvatts Strogatz Model

• Interesting area: intermediate values for p:



vvatts Strogatz Model

Variants: -(1)- rewire both "ends" of edges + allow self-edges +....
 → math.easier

-(2)- only add additional shortcut edges (no rewiring)

- For (2):
 - mean total number of shortcuts = L k p
 - mean degree of each node = 2k(1+p)

ú

Variants: -(1)- rewire both "ends" of edges + allow self-edges +....
 → math.easier

-(2)- only add additional shortcut edges (no rewiring)

- For (2):
 - mean total number of shortcuts = L k p
 - mean degree of each node = 2k(1+p)

vvatts Strogatz Model

Degree distribution for variant (2):

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k} \tag{**}$$

for $j \ge 2k$, and $p_j = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k +(2kp) (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $E(X \sim B(L, \widetilde{p})) = L \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$

(*): original model; (**) variant (2)

vvatts Strogatz Model

Degree distribution for variant (2):

$$p_{j} = {L \choose j-2k} \left[\frac{2kp}{L}\right]^{j-2k} \left[1 - \frac{2kp}{L}\right]^{L-j+2k} \tag{**}$$

for $j \geq 2k$, and $p_j = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k +(2kp)
 (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $\widehat{E(X \sim B(L, \widetilde{p}))} = L \ \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$

(*): original model; (**) variant (2)

vvatts Strogatz Model

Degree distribution for variant (2):

$$p_{j} = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k}$$
 for $j \ge 2k$, and $p_{j} = 0$ for $j < 2k$.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k +(2kp)
 (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $\widehat{E(X \sim B(L, \widetilde{p}))} = L \ \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$

(*): original model; (**) variant (2)

vvatts Strogatz Model

Degree distribution for variant (2):

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k} \tag{**}$$

for $j \ge 2k$, and $p_j = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k +(2kp) (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $(E(X \sim B(L, \widetilde{p}))) = L \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$

(*): original model; (**) variant (2)

vvatts Strogatz Model

Degree distribution for variant (2):

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k}$$
 (**

for $j \geq 2k$, and $p_i = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k + 2kp (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $E(X \sim B(L, \widetilde{p})) = L \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$
- (*): original model; (**) variant (2)

Degree distribution for variant (2):

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k} \tag{**}$$

for $j \ge 2k$, and $p_j = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k +(2kp)
 (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $\widehat{E(X \sim B(L, \widetilde{p}))} = L \ \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$

(*): original model; (**) variant (2)

vvatts Strogatz Model

Degree distribution for variant (2):

$$p_{j} = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k} \tag{**}$$

for $j \geq 2k$, and $p_i = 0$ for j < 2k.

- in variant (2): p defined so that:
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k + 2kp (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $E(X \sim B(L, \widetilde{p})) = L \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$

(*): original model; (**) variant (2)

vvatts Strogatz Model

Degree distribution for variant (2):

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k}$$
 (**)

for $j \geq 2k$, and $p_i = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k +(2kp) (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $E(X \sim B(L, \widetilde{p})) = L \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{I}$
- (*): original model; (**) variant (2)

vvatts Strogatz Model

Degree distribution for variant (2):

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k} \tag{**}$$

for $j \geq 2k$, and $p_i = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k + 2kp (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $E(X \sim B(L, \widetilde{p})) = L \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$
- (*): original model; (**) variant (2)

Degree distribution for variant (2):

$$p_j = \binom{L}{j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k} \tag{**}$$

for $j \geq 2k$, and $p_j = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k +(2kp) (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $\widehat{E(X \sim B(L, \widetilde{p}))} = L \ \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{I}$

(*): original model; (**) variant (2)

vvatts Strogatz Model

Degree distribution for original model (without proof):

$$p_j = \sum_{n=0}^{\min(j-k,k)} \binom{k}{n} (1-p)^n p^{k-n} \frac{(pk)^{j-k-n}}{(j-k-n)!} e^{-pk}$$
 (*)

for
$$j \ge k$$
, and $p_j = 0$ for $j < k$.

Degree distribution for original model (without proof):

$$p_{j} = \sum_{n=0}^{\min(j-k,k)} {k \choose n} (1-p)^{n} p^{k-n} \frac{(pk)^{j-k-n}}{(j-k-n)!} e^{-pk}$$
for $j \ge k$, and $p_{j} = 0$ for $j < k$.

(*): original model; (**) variant (2)

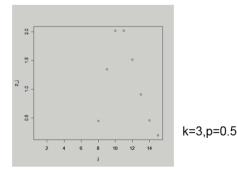
vvatts Strogatz Model

Degree distribution:

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k}$$
(**)

Poisson approximation (justified):

$$p_j = \exp(-2kp) \frac{(2kp)^{j-2k}}{(j-2k)!}$$



- → almost constant
- → not in congruence with real world NW (power laws etc.)
- (*): original model; (**) variant (2)

vvatts Strogatz Model

Approximation (2) :

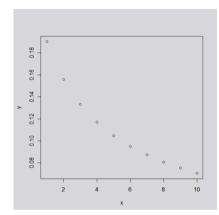
$$\ell = \frac{L}{k} f(Lkp) \label{eq:elliptic_loss} \text{ mean number of shortcuts}$$

== up to factor k same as Approx (1) for

$$\xi = 1/kp$$
 and $g(x) = xf(x)$

independent investigations yield approximation

$$f(x) = \frac{1}{2\sqrt{x^2 + 2x}} \tanh^{-1} \sqrt{\frac{x}{x+2}}$$



vvatts Strogatz Model

• Results for D > 1 : qualitatively similar

Models of Network Growth

Random Graphs, Watts-Strogatz etc: Models aimed at reproducing properties of real world NW;

BUT: not really generative models / models of network growth

◆ → Models of Price and Barabasi & Albert

Results for D > 1 : qualitatively similar

R

Models of Network Growth

 Random Graphs, Watts-Strogatz etc: Models aimed at reproducing properties of real world NW;

BUT: not really generative models / models of network growth

◆ Models of Price and Barabasi & Albert

Price's Model

- Basic principle:
 - "the rich get richer"
 - "Matthew effect" ("For to every one that hath shall be given..." Bible: Mt25:29)
 - "preferential attachment"
- Assume directed citation NW:
 p_k: fraction of nodes with in-degree k,
 - each node (paper) has av. out degree m
 - mean out-deg. $\stackrel{!}{=}$ mean in-deg. \rightarrow $\sum_k kp_k = m$
- iteratively build graph by adding new vertices (and associated directed (out)edges from these nodes)

Basic principle:

"the rich get richer"

"Matthew effect" ("For to every one that hath shall be given..." Bible: Mt25:29)

"preferential attachment"

- Assume directed citation NW:
 - p_k: fraction of nodes with in-degree k,
 - each node (paper) has av. out degree m ∖
 - mean out-deg. $\stackrel{!}{=}$ mean in-deg. \rightarrow $\sum_k kp_k=m$

• iteratively build graph by adding new vertices (and associated directed (out)edges from these nodes)

B

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - → prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

$$x = \frac{(k+1)p_k}{m+1}m$$

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - \rightarrow prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_{k}(k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

Since mean number of out-edges per added vertex == m → mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

- Basic principle:
 - "the rich get richer"
 - "Matthew effect" ("For to every one that hath shall be given..." Bible: Mt25:29)

"preferential attachment"

- Assume directed citation NW:
 - p_k: fraction of nodes with in-degree k,
 - each node (paper) has av. out degree m
 - mean out-deg. $\stackrel{!}{=}$ mean in-deg. \rightarrow $\sum_k kp_k = m$
- iteratively build graph by adding new vertices (and associated directed (out)edges from these nodes)

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - → prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

 Since mean number of out-edges per added vertex == m → mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - \bullet \rightarrow prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

 Since mean number of out-edges per added vertex == m mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} \, m$$

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - → prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

Since mean number of out-edges per added vertex == m → mean nymber of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - \bullet \rightarrow prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

Since mean number of out-edges per added vertex == m →
mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - → prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

 Since mean number of out-edges per added vertex == m → mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k + 1)p_k}{m+1} m$$

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

from previous

- mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1
 - mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
 - → the net change in the quantity np, per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for $k \geq 1$, or

$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for k = 0.

from previou:

- mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1
 - mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
 - → the net change in the quantity np_k per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for $k \geq 1$, or

$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for
$$k = 0$$
.

Price's Model

previous

- mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1
 - mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
 - → the net change in the quantity np_k per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$
for $k \ge 1$, or
$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for
$$k = 0$$
.

Price's Model

 $^{\bullet}$ Computing stationary solutions $\ p_{k,n+1}=p_{k,n}=p_k$ of this equation we find:

$$p_k \sim k^{-(2+1/m)}$$
 for $n \to \infty$

- → the desired power law distribution
- we see: "the rich get richer" → power law

Barabasi-Albert Model

- same principles as Price's but use undirected edges, intended as model for the WWW
- nodes with fixed degree m are added to the network at each iteration

$$p_k \sim k^{-3}$$
 for $n \rightarrow \infty$

 $^{\bullet}$ Computing stationary solutions $~p_{k,n+1}=p_{k,n}=p_k$ of this equation we find:

- → the desired power law distribution
- we see: "the rich get richer" → power law

parabasi-Albert Model and Price's Model

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed version of Barabasi Albert: attachment prop to sum of out and in- degree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

parabasi-Albert Model and Price's Model

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed version of Barabasi Albert: attachment prop to sum of out and in- degree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

Darabasi-Albert Model and Price's Model

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed version of Barabasi Albert: attachment prop to sum of out and in- degree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed version of Barabasi Albert: attachment prop to sum of out and in- degree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

Processes on Networks: Percolation

- Assume structure of NW known: what about processes on networks (e.g. spread of info in SN)?
- Percolation: Randomly assign states "occupied" and "not occupied" to either edges or vertices → investigate occupied and un-occupied "parts" separately
- Similarly: Take out nodes / edges, ask for network resilience. E.g. measure resilience via connectednes (e.g. existence of giant component)
- Example: configuration random graph model with power law degree distribution $p_k k^{-\alpha}$; investigate phase transition to / from existing giant component when "occupying" nodes

■ [®] ⊬rocesses on Networks: Percolation

- degree distr.: p_k~k⁻α ;
- let q be the constant fraction of occupied ("functional" / "working") vertices

B

◆ for vertex with degree k: fraction of occupied neighbors:

$$p(k'|k) = {k \choose k'} q^{k'} (1-q)^{k-k'}$$

→ probability that any node is connected to k´ occupied nodes is

$$p_{k'} = p(k') = \sum_{k} p(k'|k) p(k) = \sum_{k} p(k'|k) p^{k} = \sum_{k=k'}^{\infty} p_k {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• \rightarrow (analysis similar to slide 29 / 30) \rightarrow for $\alpha \le 3$: independent of positive q: giant component always exists \rightarrow random "removal" of (1-q) nodes leaves NW "unimpressed"

Processes on Networks: Percolation

- degree distr.: p_k~k-α ;
- let q be the constant fraction of occupied ("functional" / "working") vertices
- > for vertex with degree k: fraction of occupied neighbors:

$$p(k'|k) = {k \choose k'} q^{k'} (1-q)^{k-k'}$$

◆ probability that any node is connected to k´ occupied nodes is

$$p_{k'} = p(k') = \sum_{k} p(k'|k) p(k) = \sum_{k} p(k'|k) p_k = \sum_{k=k'}^{\infty} p_k \binom{k}{k'} q^{k'} (1-q)^{k-k'}$$

→ (analysis similar to slide 29 / 30) → for $\alpha \le 3$: independent of positive q: giant component always exists → random "removal" of (1-q) nodes leaves NW "unimpressed"

■ ९ Processes on Networks: Percolation

- degree distr.: p_k~k^{-α} :
- let q be the constant fraction of occupied ("functional" / "working") vertices
- for vertex with degree k: fraction of occupied neighbors:

$$p(k'|k) = \binom{k}{k'} q^{k'} (1-q)^{k-k'}$$

• → probability that any node is connected to k´ occupied nodes is

$$p_{k'} = p(k') = \sum_{k} p(k'|k) p(k) = \sum_{k} p(k'|k) p^{k} = \sum_{k=k'}^{\infty} p_k {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• \rightarrow (analysis similar to slide 29 / 30) \rightarrow for $\alpha \le 3$: independent of positive q: giant component always exists \rightarrow random "removal" of (1-q) nodes leaves NW "unimpressed"

Processes on Networks: Percolation

- degree distr.: p_k~k^{-α};
- let q be the constant fraction of occupied ("functional" / "working") vertices
- ◆ for vertex with degree k: fraction of occupied neighbors:

$$p(k'|k) = {k \choose k'} q^{k'} (1-q)^{k-k'}$$

◆ probability that any node is connected to k´ occupied nodes is

$$p_{k'} = p(k') = \sum_{k} p(k'|k) p(k) = \sum_{k} p(k'|k) p^{k} = \sum_{k=k'}^{\infty} p_{k} {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• \rightarrow (analysis similar to slide 29 / 30) \rightarrow for $\alpha \le 3$: independent of positive q: giant component always exists \rightarrow random "removal" of (1-q) nodes leaves NW "unimpressed"

■ [●] Processes on Networks: Percolation

- degree distr.: p_k~k^{-α} ;
- let q be the constant fraction of occupied ("functional" / "working") vertices
- → for vertex with degree k: fraction of occupied neighbors:

$$p(k'|k) = {k \choose k'} q^{k'} (1-q)^{k-k'}$$

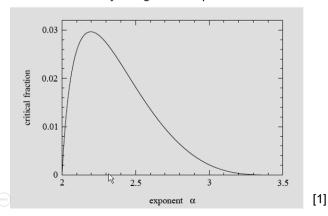
◆ probability that any node is connected to k´ occupied nodes is

$$p_{k'} = p(k') = \sum_{k} p(k'|k) p(k) = \sum_{k} p(k'|k) pk = \sum_{k=k'}^{\infty} p_k {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• \rightarrow (analysis similar to slide 29 / 30) \rightarrow for $\alpha \le 3$: independent of positive q: giant component always exists \rightarrow random "removal" of (1-q) nodes leaves NW "unimpressed"

Processes on Networks: Percolation

- degree distr.: p_k~k⁻α ;
- ullet let q_k be the fraction of occupied vertices dependent on k (e.g. remove / occupy only high degree nodes)
- → (analysis) → only a small fraction of the high degree nodes needs to be removed to destroy the giant component

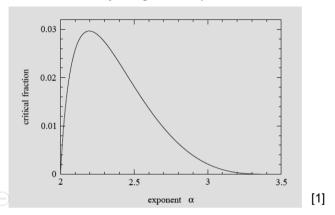


Processes on Networks: Percolation

- degree distr.: p_k~k^{-α} ;
- let q_k be the fraction of occupied vertices dependent on k (e.g. remove / occupy only high degree nodes)

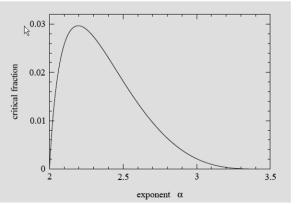
De la

 → (analysis) → only a small fraction of the high degree nodes needs to be removed to destroy the giant component



■ Processes on Networks: Percolation

- degree distr.: p_k~k^{-α} ;
- let q_k be the fraction of occupied vertices dependent on k (e.g. remove / occupy only high degree nodes)
- → (analysis) → only a small fraction of the high degree nodes needs to be removed to destroy the giant component



Processes on Networks: Epidemiology

- susceptibles: can be infected; infective: have the disease and are contageous, recovered: have had the disease and are immune (or dead)
- infection probability / rate β , recovering probability γ
- SIR model ("fully mixed"):

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$$

- disease: nodes V = susceptible s ⊎ infective i ⊎ recovered r
- susceptibles: can be infected; infective: have the disease and are contageous, recovered: have had the disease and are immune (or dead)
- infection probability / rate β , recovering probability γ
- SIR model ("fully mixed"):

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$$

Processes on Networks: Epidemiology

- disease: nodes V = susceptible s ⊎ infective i ⊎ recovered r
- susceptibles: can be infected; infective: have the disease and are contageous, recovered: have had the disease and are immune (or dead)
- infection probability / rate β , recovering probability γ
- SIR model ("fully mixed"):

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta i s, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta i s - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$$

Processes on Networks: Epidemiology

- disease: nodes V = susceptible s ⊎ infective i ⊎ recovered r
- susceptibles: can be infected; infective: have the disease and are contageous, recovered: have had the disease and are immune (or dead)
- infection probability / rate $\beta_{\cite{1.5}}$, recovering probability γ
- SIR model ("fully mixed"): → SIR model ("fully mixed"):

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$$

every of the second second second representation of the second se

- - nvestigate dissociation into components (internally connected by uncocupied egdes)

 corresp. phase transitions; transitions from spidemic outbreak corresp. phase with case and component are considered to the component also always exists.
- now: "play" the model on a network (e.g. human contact network) and investigate perlocation effects: ♠
 - $^{\bullet}$ β (infection probability per unit time) and γ (recovery prob. p.u.t.): drawn from probability distributions $P_i(\beta)$ and $P_i(\gamma)$ --> problem is equivalent to edge-percolation problem with edge occupation probability

 $T = 1 - \int_0^\infty P_i(\beta) P_r(\gamma) e^{-\beta/\gamma} d\beta d\gamma.$

- investigate dissociation into components (internally connected by unoccupied egdes)
- corresp. phase transitions: transitions from epidemic outbreak (giant component) vs. controlled state (small components)
- result: power law with α≤3→ giant component also always exists

 (4) (b) There (2) (c)

Processes on Networks: Epidemiology

- now, blay, the model on a network (e.g. human contact network) and investigate periocation effects; and investigate periocation effects; and an effect of the second period perio
 - investigate dissociation into components (internally connected I
- now: "play" the model on a network (e.g. human contact network) and investigate perlocation effects:
 - ullet $_{eta}$ (infection probability per unit time) and $_{\gamma}$ (recovery prob. p.u.t.): drawn from probability distributions $P_i(eta)$ and $P_i(\gamma)$ --> problem is equivalent to edge-percolation problem with edge occupation probability

 $T = 1 - \int_0^\infty P_i(\beta) P_r(\gamma) e^{-\beta/\gamma} d\beta d\gamma.$

- investigate dissociation into components (internally connected by unoccupied egdes)
- corresp. phase transitions: transitions from epidemic outbreak (giant component) vs. controlled state (small components)
- eresult: power law with α≤3→ giant component also always exists

Processes on Networks: Epidemiology

- The way play the model on a stework (e.g. human contact network) and

 (infection probability derivatives of the probability
- now: "play" the model on a network (e.g. human contact network) and investigate perlocation effects:
 - $^{\circ}$ $^{\circ}$ $^{\circ}$ (infection probability per unit time) and $^{\circ}$ (recovery prob. p.u.t.): drawn from probability distributions $P_i(\beta)$ and $P_i(\gamma)$ --> problem is equivalent to edge-percolation problem with edge occupation probability

 $T = 1 - \int_0^\infty P_i(\beta) P_r(\gamma) e^{-\beta/\gamma} d\beta d\gamma.$

- investigate dissociation into components (internally connected by unoccupied egdes)
- corresp. phase transitions: transitions from epidemic outbreak (giant component) vs. controlled state (small components)
- result: power law with α≤3→ giant component also always exists

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ $\xrightarrow{\mathbf{A}} \mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from" highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights v

$$\mathbf{A}\mathbf{y} = \lambda \mathbf{x}, \quad \mathbf{A}^T \mathbf{x} = \mu \mathbf{y} \quad \rightarrow \quad \mathbf{A}\mathbf{A}^T \mathbf{x} = \lambda \mu \mathbf{x}$$

rocesses on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j \text{ for some } \lambda > 0$$
 \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from"
 highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights y

$$\mathbf{A}\mathbf{y} = \lambda \mathbf{x}, \quad \mathbf{A}^T \mathbf{x} = \mu \mathbf{y} \quad \Rightarrow \quad \mathbf{A}\mathbf{A}^T \mathbf{x} = \lambda \mu \mathbf{x}$$

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from" highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights y

$$\mathbf{A}\mathbf{y} = \lambda\mathbf{x}, \quad \mathbf{A}^T\mathbf{x} = \mu\mathbf{y} \quad \Rightarrow \quad \mathbf{A}\mathbf{A}^T\mathbf{x} = \lambda\mu\mathbf{x}$$

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights y

$$\mathbf{A}\mathbf{y} = \lambda \mathbf{x}, \quad \mathbf{A}^T \mathbf{x} = \mu \mathbf{y} \quad \rightarrow \quad \mathbf{A}\mathbf{A}^T \mathbf{x} = \lambda \mu \mathbf{x}$$

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from" highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights y

$$\mathbf{A}\mathbf{y} = \lambda\mathbf{x}, \qquad \mathbf{A}^T\mathbf{x} = \mu\mathbf{y} \qquad \Rightarrow \qquad \mathbf{A}\mathbf{A}^T\mathbf{x} = \lambda\mu\mathbf{x}$$

Processes on Networks: Searching and Navigating

- Instead of "Search engine"-type of network search (one big crawl), perform local crawls
- especially suitable in decentralized scenarios
- example: BFS: "do you have the info"? either "yes" or "no, but will forward to my nighbors"
- variant by Adamic: instead of asking all neighbors: answer will be "no but i have k neighbors → asker can choose highest degree node to "pass on the query baton to" → if e.g. power law: high degree nodes cover NW very well.
- other variants: see next chapter

Processes on Networks: Searching and Navigating

- Instead of "Search engine"-type of network search (one big crawl), perform local crawls
- especially suitable in decentralized scenarios
- example: BFS: "do you have the info"? either "yes" or "no, but will forward to my nighbors"
- variant by Adamic: instead of asking all neighbors: answer will be "no but i have k neighbors → asker can choose highest degree node to "pass on the query baton to" → if e.g. power law: high degree nodes cover NW very well.
- other variants: see next chapter

Processes on Networks: Searching and Navigating

- Instead of "Search engine"-type of network search (one big crawl), perform local crawls
- especially suitable in decentralized scenarios
- example: BFS: "do you have the info"? either "yes" or "no, but will forward to my nighbors"
- variant by Adamic: instead of asking all neighbors: answer will be "no but i have k neighbors → asker can choose highest degree node to "pass on the query baton to" → if e.g. power law: high degree nodes cover NW very well.
- other variants: see next chapter

