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El-%ndom Graph Models: Poisson Graph

@%ndom Graph Models: Poisson Graph

® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

® p,: probability that a node has degree k:
kno—z
1 zle

! k n—k . ~
('\-)"’ =P =y

h

pr =

for n 2 =« and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs®
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Random Graph Models: Poisson Graph

® G, : space of graphs with n nodes and
% each of the % n(n-1) edges appears with probability p

® p,: probability that a node has degree k:
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for n & « and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs”
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® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

® p,: probability that a node has degree k:
kno—z
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for n 2 =« and holding the mean degree of a node z=p(n-1) fixed
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Random Graph Models: Poisson Graph

® Given: property Q (,is connected®, ,has diameter xyz“ etc.) of G, ,:
-Gnp has property Q with high probability“: P(Q|n,p) 2 1 iff n =2 =

(adaptated from [2] (which, in turn, is adaptated from [3]))

® In such models G, phase transitions exist for properties Q:
~threshold function” q(n) (with q(n) = « if n = =) so that:

B 0 if limys.p(n)/q(n)=0

lim,s., P(Qn,p) = s
Mn> (@In.p) 1 if limys. p(n)/g(n) =«

(adaptated from [3])

Example: giant component / connectedness of G, ,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

® probability for a given node i (with assumed degree k) to be notin X

== probability that none of its neighbors is in X

[% o0

oo . ]\
® S ukfixedy==uk > 4= Zpk_uk =e* Z (=) _ o (u—1)
i\‘:() I\T:“

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e?°



%ndom Graph Models: Poisson Graph

Eﬁ%ndom Graph Models: Poisson Graph

Example: giant component / connectedness of G,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

¢ probability for a given node i (with assumed degree k) to be not in X

== probability that none of its neighbors is in X
== uk

koo

- = ("u)l"
®Sulkfixed)==uc > = put=e*y oo =efluTl
k=0 k=0

® > fraction S of graph occupiedby Xis S =1 —u >

S=1—e*°
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Example: giant component / connectedness of G, ,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

® probability for a given node i (with assumed degree k) to be notin X

== probability that none of its neighbors is in X
== uk

® > u(kfixed)==uk > 4= Zpkuk =e? Z

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e?°
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Random Graph Models: Poisson Graph

Example: giant component / connectedness of G,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

¢ probability for a given node i (with assumed degree [5) to be not in X

== probability that none of its neighbors is in X
== uk

oQ

N % . = (zu)”
u:Zpku =e Z 0=

k=0 k=0

® > u (k fixed) == uk

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e"?°

°*S=1—-e*° .
® mean size <s> of smaller rest components (no proof): (s) =

1—2z+428
10 1T
: { |‘ _ = 1
- [ .
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| - e
o !
- 3
Z 6 [ T =
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2 L / \ - 05 E
£ 4r- [ g
> [ / / =
f__.: 5[ ! =0
0 ! P | 0
0 1 2 3 5
It mean degree =
(1]

-» ifthe av degree z is larger than 1 ( == if p ~ (1+g)/n): X exists
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D|-<%ndom Graph Models: Poisson Graph

e G —=1—e*°

e S —1—e %%

1 1
® mean size <s> of smaller rest components (no proof): (s) = — ® mean size <s> of smaller rest components (no proof): (s) -
1—2+4+25 1—24+25
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1 k2 3 4 5 1 2 3
mean degree = (] mean degree = (1]
-» if the av degree z is larger than 1 ( == if p ~ (1+€)/n): X exists -» ifthe av degree z is larger than 1 ( == if p ~ (1+€)/n): X exists
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random Graph Models: Poisson Graph Random Graph Models: Poisson Graph
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Very coarse (!!!) estimation of diameter / of G, : Very coarse (!!!) estimation of diameter / of G, :

¢ average degree of nodes: z
- in a distance of d from a node i should be

approximately zd%many nodes approximately z¢ many nodes
> ifzd=n:d=1 <> ifzd=n:d=1]

- [ ~logn/logz ~ logn (ifz is kept constant) - f[%~ log H /logz ~ logn (if z is kept constant)

® average degree of nodes: z
- in a distance of d from a node i should be

® For a more exact derivation of the result see references in [1] ® For a more exact derivation of the result see references in [1]

® We see: it is not difficult (in terms of how large must ® We see: it is not difficult (in terms of how large must
connectivity be) to achieve small diameters connectivity be) to achieve small diameters

D|-<®§indom Graph Models: Poisson Graph %ndom Graph Models: Poisson Graph

Unfortunately: small / is the only property in congruence with real world NW: Unfortunately: small / is the only property in congruence with real world NW:

® Clustering coefficient C(" of Gpp : ® Clustering coefficient C(" of Ghp :

® Since C( is probability of transitivity and edges are “drawn”

® Since C( is probability of transitivity and edges are “drawn”
independently = C(M=p = 0O(1/n) (if z is fixed, as usual)

independently & CM=p =0O(1/n) (if z is fixed, as usual)

*Cis usually much larger for real world NW: ®cCis usually much larger for real world NW:

Film 3.65 2.99 0.79 0.00027 Film 3.65 2.99 0.79 0.000%7

collaboration collaboration &

Power Grid 18.7 124 0.08 0.005 Power Grid 18.7 124 0.08 0.005

C.elegans 2.65 2.25 &28 0.05 C.elegans 2.65 225 0.28 0.05
[4]

(4]

° Degree distribution is Poisson and not power law ¢ Degree distribution is Poisson and not power law
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Unfortunately: small / is the only property in congruence with real world NW: ® |nstead of having connection probability p as in Poisson G,

demand certain degree distributions p, (e.g. power law) — ,configuration
model*

® Clustering coefficient C(" of Gpp :

® Since C is probability of transitivity and edges are “drawn”

® .. . . .
independently > C(V = p = O(1/n) (if  is fixed, as usual) - results are promising but still not in full congruence with real world NW

i
° . - ks
® Cis usually much larger for real world NW: > still many difficult open problems
® still not accounted for: transitivity (high clustering coefficient)
Film 3.65 2.99 0.79 0.00027
collaboration - &
Power Grid  18.7 12.4 0.08 0.005
C.elegans 2.65 2.25 0.28 0.05
[4]
° Degree distribution is Poisson and not power law
O & &,
vvatts Strogatz Model vvatts Strogatz Model
® Great problem of random graphs: high clustering coeff. / transitivity does not ® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models occur for simple models
® > Watts & Strogatz 1998: Small World Model ® > Watts & Strogatz 1998: Small World Model
® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring ® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k ® each node connected to neighbors in lattice at distance of most k
—> total number of edges =L k & —> total number of edges = L k
¢ Lrewiring” of edges with probability p ® ~rewiring“ of edges with probability p
before rewiring after rewiring before rewiring after rewiring
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EWatts Strogatz Model

® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models

® > Wwatts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges =L k
¢ Lewiring” of edges with probability p[%

before rewiring

after rewiring

P
Vo asesacanN

% e
NN

(11

@
Ew\fatts Strogatz Model

® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models

® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges = L k
® ~rewiring“ of edges with probability p%

before rewiring

after rewiring
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vatts Strogatz Model

® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models

® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connect@kd to neighbors in lattice at distance of most k

—> total number of edges =L k
¢ Lrewiring” of edges with probability p

before rewiring

after rewiring
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p: transition between regular lattice and sth. like a random graph:
(for D=1:)

® p=0: regular lattice:
® C=CM=(3k-3)/(4k-2) > %
®/=L/4k for LD

for k== - clustering coeff. ,ok"

- no small world[%ffect

¢ p=1: similar to a random graph:
®c~2k/L for L=
*1= for L>w

—> clustering coeff too small

logL/logk - small world effect.
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p: transition between regular lattice and sth. like a random graph:

(for D=1:)

® p=0: regular lattice:

® Cc=C=(3k-3)/(4k-2) > % fork>=» - clustering coeff. ,ok"

®7=L/4k for L«

- no small world effect

ks
¢ p=1: similar to a random graph:
®c~2k/L for L2« - clustering coeff too small
®= logL/logk forL—=>w« - small world effect.
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p: transition between regular lattice and sth. like a random graph:

(for D=1:)

® p=0: regular lattice:

® C=CM=(3k-3)/(4k-2) > % fork>= - clustering coeff. ,ok"

®1=L/4k for L>w

g
® p=1: similar to a random graph:

®Cc~2k/L for L2« —> clustering coeff too small

.l=

logL/logk forL—=>w - small world effect.
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vatts Strogatz Model

- no small world effect

&

® Great problem of random graphs: high clustering coeff. / transitivity does not

occur for simple models

® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

- total numlt'%er ofedges =Lk
_® Lrewiring” of edges with probability p

before rewiring

after rewiring
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® Great problem of random graphs: high clustering coeff. / transitivity does not

occur for simple models

® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring

® each node connected to neighbors in lattice at distance of most k

—> total number of edges = L k
_° ~rewiring“ of edges with probability p

before rewiring

after rewiring
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transition between regular lattice and sth. like a random graph:

(for D=1:)

¢ p=0: regular lattice:
®C=C=(3k3)(dk2) >% fork>=
®1=L/4k  forL >«

- clustering coeff. ,ok"

- no small world effect

® p=1: similar to a random graph:
®c~2k/L forL—)oo%
®/=1logL/logk forL=>w

- clustering coeff too small

- small world effect.
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® Interesting area: intermediate values for p:

or C/Cnm

max

i1

—— mean vertex-vertex distance T
--—- clustering coefficient :

0.001 0.01 0.1 1

rewiring probability p
(1]
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® Interesting area: intermediate values for p:

1

e

® Interesting area: intermediate values for p:

1

Ly “‘\\ i

or C/C
max

max

Il

M |

—— mean vertex-vertex distance 1

clustering coefficient

0.001 0.01 0.1 1

rewiring probability p
(]

or C/Cnm

max

Il

—— mean vertex-vertex distance T
--—- clustering coefficient :

0.001 0.01 0.1 1

rewiring probability p
(1]
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® Interesting area: intermediate values for p:

N
EWatts Strogatz Model

1

T r 7f7.+\u_,u_‘+]§ml“. ‘
—— mean vertex-vertex distance
-—-- clustering coefficient

or C/C_
max

max

i

el PR e Y IR
0.001 0.01 0.1 1

rewiring probability p

(1]
@
Ew\fatts Strogatz Model

® Variants: -(1)- rewire both ,ends” of edges + allow self-edges +..
ki - math.easier

-(2)- only add additional shortcut edges (no rewiring)

N
® For (2):

® mean total number of shortcuts = L k p
® mean degree of each node = 2k(1+p)

] @,
vatts Strogatz Model

® Variants: -(1)- rewire both ,ends” of edges + allow self-edges +..
- math.easier

-(2)- only add additional shortcut edges (no rewiring)
® For (2):

® mean total number of shortcuts = L k p
® mean degree of each node =2k(1+p)

&

¢ Degree distribution for variant (2):

_( L \[2kp f‘z"‘l okp] LI+ N
B=\Goo) | T T ™)

for j = 2k, and p; = 0 for j < 2k

® in variant (2): p defined so that :
-- mean number of added shortcutfe, == Lkp
-- and the mean degree == 2k +2kp
(2k from lattice plus 2kp addég"fandom shortcuts)
-- number of sh@rtcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E( X~ B(L,_ij.)'"";: Lp
>p-2p R
=

(*): original model; (**) variant (2)
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® Degree distribution for variant (2):

L 2kp j-2k 2kp L—j+2k
]} = i — 1 — — (**)
1T\ | T I

fOr f ﬁ I-)-;‘l- m]d 11) = D fUl‘_j' < QA.
&

® in variant (2): p defined so that :
-- mean number of added shortcuts == Lkp

-- and the mean degree == 2k + 2kp
(2k from lattice plus 2kp addeg fandom shortcuts)

-- humber of shortcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E(X B(L p))

-)mkp ffffffffff
L

(*): original model; (**) variant (2)
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¢ Degree distribution for variant (2):

~ I 2ep j—2k l 2%p L—j+2k ~
P = j— 2% I - I ( )

for j = Qé« and p; = 0 for j < 2k

" &)

® in variant (2): p defined so that :
-- mean number of added shortcuts == Lkp
-- and the mean degree == 2k + 2kp
(2k from lattice plus 2kp addeg fandom shortcuts)
-- number of shortcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E(X B(L p))

emkp ffffffffff
L

(*): original model; (**) variant (2)
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® Degree distribution for variant (2):

— L 2kp j-2k . 2%kp L—j+2k )
P = i ok T _ T -

ks
fOr f ﬁ I-)-;‘l- m]d 11) = D fUl‘_j' < QA.

® in variant (2): p defined so that :
-- mean number of added shortcuts == Lkp
-- and the mean degree == 2k + 2kp
(2k from lattice plus 2kp addeg fandom shortcuts)
-- humber of shortcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E(X B(L p))

9m ka ———————————
L

(*): original model; (**) variant (2)

¢ Degree distribution for variant (2):

_( L \[2kp f‘z"‘l okp] LI+ N
B=\Goo) | T T ™)

for j > 2k, and p; = 0 for j < 2k

® in variant (2): p defined so that :
-- mean number of added shortcuts == Lkp
-- and the mean degree = %k + 2kp
(2k from lattice plus 2kp added fandom shortcuts)
-- number of shortcuts is b|nom|a,lly distrib.

® Expectation of Binomial distribution: E(X B(L p))

em ka ———————————
L

(*): original model; (**) variant (2)
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® Degree distribution for variant (2):

— L 2kp j-2k . 2%kp L—j+2k )
p; = i ok T _ T -

fOr f ﬁ I-)-;‘l- m]d 11) = D fUl‘_j' < QA.

® in variant (2): p defined so that :
-- mean number of added shortcuts == Lkp

-- and the mean degree == 2k + 2kp
(2k from lattice plus 2kp addeg fandom shortcuts)

-- humber of shortcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E(X B(L p))

-)mkp ffffffffff
L

(*): original model; (**) variant (2)
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¢ Degree distribution for variant (2):

[ L \[2kp]* [ 2P [—j+2k N
P = j— 2% I - I ( )
i

for j > 2k, and p; = 0 for j < 2k

® in variant (2): p defined so that :
-- mean number of added shortcuts == Lkp
-- and the mean degree == 2k + 2kp
(2k from lattice plus 2kp addeg fandom shortcuts)
-- number of shortcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E(X B(L p))

emkp ffffffffff
L

(*): original model; (**) variant (2)
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® Degree distribution for variant (2):

— L 2kp j-2k . 2%kp L—j+2k )
P = i ok T _ T -

fOr f ﬁ I-)-;‘l- m]d 11) = D fUl‘_j' < QA.

® in variant (2): p defined so that :
-- mean number of added shortcuts == Lkp
-- and the mean degree == 2k + 2kp
(2k from lattice plus 2kp addeg Fatidom shortcuts)
-- humber of shortcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E(X B(L p))

9m ka ———————————
L

(*): original model; (**) variant (2)

¢ Degree distribution for variant (2):

_( L \[2kp f‘z"‘l okp] LI+ N
B=\Goo) | T T ™)

for j > 2k, and p; = 0 for j < 2k

® in variant (2): p defined so that :
-- mean number of added shortcuts == Lkp
-- and the mean degree == 2k + 2kp
(2k from lattice plus 2kp addeg fandom shortcuts)
-- number of shortcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E(X B(L p))

em ka ———————————
Ly

(*): original model; (**) variant (2)
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® Degree distribution for variant (2):

— L 2kp j-2k . 2%kp L—j+2k )
P = i — 2%k T [%— T -

fOr f ﬁ I-)-;‘l- m]d 11) = D fUl‘_j' < QA.

® in variant (2): p defined so that :
-- mean number of added shortcutg == Lkp
-- and the mean degree == 2k *2kp
(2k from lattice plus 2kp addég"l‘andom shortcuts)
-- humber of shortcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E(X wB(L,_Ej.j:;;: Lp
L R
P=7
(*): original model; (**) variant (2)

@
EV\fatts Strogatz Model

¢ Degree distribution for original model (without proof):

PR RN e RYTE
— 1 — n, k—n pk *
p; E (n)[ p)"p =k —n) e *)
n=0
i

for j > k,and p; =0 for j < k.

(*): original model; (**) variant (2)

] @,
vatts Strogatz Model

® Degree distribution for original model (without proof):

min(j—k,k) \j—ke—7
BN e (pR)? R
— 2 : 1 — n, k—n pk *
" n=>0 (?2) [ p) P U -k — n]' ‘ ( )

for j > k,and p; =0 for j < k.
ks

(*): original model; (**) variant (2)

¢ Degree distribution:

B L 2kp j-2k . 2kp L—j+2k
Pi=\G )T T

® Poisson approximation (justified):
Qhkp)
(j - 2k)!

20
L

p; = exp(-2kp)

15

3]

0%

® > almost constan
- not in congruence with real world NW (power laws etc.)

(*): original model; (**) variant (2)

(*)

k=3,p=0.5
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® Approximation (2) : °
Results for D > 1 : qualitatively similar

_ L
£= ff(Lkp) ber of shortcut
wmean numper or snoricuts

Iy
== up to factor k same as Approx (1) for
E= 1/kp and g(«) = «f(x
> /Ky g(x) f(z) Models of Network Growth
c ® Random Graphs, Watts-Strogatz etc: Models aimed at reproducing
independent investigations yield approximation ° properties of real world NW;
1 -1 £ = .
f(r) = ————tanh e BUT: not really generative models / models of network growth
() 2v a2 + 2 x4 2 :
k g ® > Models of Price and Barabasi & Albert
O & @,
vvatts Strogatz Model Frice’'s Model
® Results for D > 1 : qualitatively similar ® Basic principle:
»the rich get richer*
,,Matthew effect” (.For to every one that hath shall be given...” Bible: Mt25:29)
& .preferential attachment"
Models of Network Growth ® Assume directed citation NW:,
® p,: fraction %f nodes with in-degree k,
® Random Graphs, Watts-Strogatz etc: Models aimed at reproducing ® each node (paper) hag av. outdegree m
. |
properties of real world NW; ® mean out-deg. = mean in-deg. > ZR_ kpr =m

BUT: not really generative models / models of network growth
¢ iteratively build graph by adding new vertices (and associated

° . . directed (out)edges from these nodes)
- Models of Price and Barabasi & Albeg

hE
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Frice's Model

H &
Frice's Model

® Basic principle:
sthe rich get richer”
,Matthew effect”
Lpreferential attachment®

(.For to every one that hath shall be given...” Bible: Mt25:29)

® Assume directed citation NW:
® p,: fraction of nodes with in-degree k,
® each node (paper) has av. out degree m 1,
® mean out-deg. £ mean in-deg. = Zk kpr = m

i

¢ iteratively build graph by adding new vertices (and associated
directed (out)edges from these nodes)

H &
Frice's Model

® probability for a paper X to get cited by a new paper is proportional to
number of existing citations of X (X's in-degree)

® initial .starting in-degree” ky=1
*> prob. th[%at new edge attaches to any node with in-deg. k ==
(k + 1)ps (k+ 1)pr
>k +1)py m—+ 1

® Since mean number of out-edges per added vertex==m =
mean number of new in-edges to nodes with current in-degree K is ==

(k+Vpr
m—+1

® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1

@
Frice's Model

® probability for a paper X to get cited by a new paper is proportional to
number of existing citations of X (X's in-degree)

® initial .starting in-degree” k,=1
> prob. that new edge attaches to any node with in-deg. k ==
(nlif + l)pk[\ _ (Jllf + 1)]);\-
>k +1)py m+1

® Since mean number of out-edges per added vertex==m >
mean number of new in-edges to nodes with current in-degree Kk is ==

b+ Vpe
m—+1

® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1

® Basic principle:
sthe rich get richer®
Matthew effect”
.preferential attachment”

(.For to every one that hath shall be given...” Bible: Mt25:29)

® Assume directed citation NW:
® pi: fraction of nodes with in-degree k,
® each node (paper) has av. out degrige m
® mean out-deg. S mean in-deg. > Zk kpr =m

¢ iteratively build graph by adding new vertices (and associated
directed (out)edges from these nodes)



&
Frice's Model

H &
Frice's Model

® probability for a paper X to get cited by a new paper is proportional to
number of existing citations of X (X's in-degree)

® initial ,starting in-degree* k,=1
> prob. that new edge attaches to any node with in-deg. k ==
(k+Dpr  (k+1)pr
>k +1)py m+1

® Since mean number of out-edges per added vertex==m >
mean number of new in-edges to nodes with curréht in-degree k is ==

b+ Vpe
m—+1

® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1

H &
Frice's Model

® probability for a paper X to get cited by a new paper is proportional to
number of existing citations of X (X's in-degree)

® initial .starting in-degree” ky=1
*> prob. that new edge attaches to any node with in-deg. k ==
(k + 1)ps B (k+ 1)pr
>k +1)py m—+ 1

® Since mean number of out-edges per added vertex==m =
mean niymber of new in-edges to nodes with current in-degree Kk is ==

(k+Vpr
m—+1

® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1

H e
Frice's Model

® probability for a paper X to get cited by a new paper is proportional to
number of existing citations of X (X's in-degree)

® initial .starting in-degree” k,=1
*S prob. that new edge attaches to any node with in-deg. k ==
(k+Dpr  (k+1)pr
>k +1)py m+1

® Since mean number of out-edges per added vertex==m >
mean number of new in-edges to nodes with current in-degree Kk is ==

b+ Vpe
m+1

® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1

® probability for a paper X to get cited by a new paper is proportional to
number of existing citations of X (X's in-degree)

® initial LStarting in-degree” ky=1
*> prob. that new edge attaches to any node with in-deg. k ==
(k +1)p (k+1)px
>k +1)py m—+ 1

® Since mean number of out-edges per added vertex==m =
mean number of new in-edges to nodes with current in-degree K is ==

_E+Dpr
Iy m—+1

® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1



Y
Frice's Model

H &
Frice's Model

® probability for a paper X to get cited by a new paper is proportional to
number of existing citations of X (X's in-degree)

® initial ,starting in-degree* k,=1
*> prob. that new edge attaches to any node with in-deg. k ==

(k+ 1)ps (k + 1)px

Se(k+Dpr m+1

® Since mean number of out-edges per added vertex==m >

mean number of new in-edges to nodes with current in-degree K is ==

ok
b +V)pe
m+ 1

® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1

H &
Frice's Model

1
[:?ETiOUS
*“ ® mean number of nodes with in-degree k (which is np,) decreases

by x because their in-degree changes to k+1

® mean number of nodes with in-degree k also increases because of
nodes having previously k-1 and now have k

® > the net change in the quantity np, per added vertex satisfies:
m

(” + l)f)l."n—l — NPrn = [A:pk—l.n - ('l‘ + 1)?—’1{.11} m
b

for k =1, or

m

n+Dponet —mpon=1—pon—0.
( )] 0,n+1 Po.n Po,n 1

for £ = 0.
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® Computing stationary solutions Phkn+1 = Pkn = Pk ® Computing stationary solutions Pkn+1 = Pkn = Pk
of this equation we find: . of this equation we find: .
Pk ~ e~ Gt for N>« PE ~ fom G/ for n>«
s
® > the desired power law distribution ® > the desired power law distribution
® we see: ,the rich get richer" - power law ® we see: ,the rich get richer” - power law
H & . &, ) .
barabasi-Albert Model parabasi-Albert Model and Price's Model
® same principles as Price‘s but use undirected edges, intended as ® crucial: linear preferential attachment

model for the WWW

® . . .
found ber of real Id NW (e.g. citation NW
® hodes with fixed degree m are added to the network at each oundin a humber ot reat wor (e.g. citation )

iteration s ® Barabasi-Albert: undirected (not like WWW)
° edges connect to nodes with probabiﬁty proportional to current ° . . .
degree of node . dlr_ected version of Ba_rapam Albert: attachment prop to sum of out
and in- degree: not realistic for e.g. the WWW but for social NW?!
s analogous analysis as for Price‘s leads to ® Price: generates directed acyclic graph: not realistic for SN
-3 and WWW
Pr ~~ k for n>w

® out-degree of WWW: power-law, Price + BA: constant
s



%rabasi—Albert Model and Price‘'s Model

Eoﬁrabasi—Albert Model and Price‘s Model

® crucial: linear preferential attachment
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and WWW

® out-degree of WWW: power-law, Price + BA: constant
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® crucial: linear preferential attachment
® found in a number of real world NW (e.g. citation NW)
® Barabasi-Albert: undirected (not like WWW)

® directed version of Barabasi Albert: attachment prop to sum of out
and in- deg;gee: not realistic for e.g. the WWW but for social NW?!

® Price: generates directed acyclic graph: not realistic for SN
and WWW I

® out-degree of WWW: power-law, Price + BA: constant

Frocesses on Networks: Percolation

® Assume structure of NW known: what about processes on networks
(e.g. spread of info in SN)?

® percolation: Randomly assign states ,occupied” and ,not occupied®
to either edges or vertices = investigate occupied and un-occupied
.parts” separately

i

¢ Similarly: Take out nodes / edges, ask for network resilience. E.g.
measure resilience via connectednes (e.g. existence of giant
component)

i
¢ Example: configuration random graph model with power law degree
distribution p,~k® ; investigate phase transition to / from existing
giant component when ,occupying” nodes
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° degree distr.: p~k< ;

® let g be the constant fraction of occupied (,functional”/ ,working*)
vertices

ks
® > for vertex with degree k: fraction of occupied neighbors:

pl)= ()" (1—q)**
*> probability that any node is connected to k™ occupied nodes is

; > AT N Lt
PR = p(k’)=zp(k’\k) p(k)=zp(k k) pk="> " pi (A.,) ¢ (11—t "
k k

=k

® > (analysis similar to slide 29 / 30) = for a < 3 : independent
of positive q: giant component always exists - random
.rfemoval“ of (1-q) nodes leaves NW ,unimpressed*

¢ degree distr.: p~k* ;
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vertices

® > for vertex with degree k: fraction of occupied neighbors:
p(k’|k)[; (:’)‘f;‘f (1 . rj)k'_"‘"
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k ld =k’
® > (analysis similar to slide 29 / 30) > for a < 3 : independent

of positive q: giant component always exists - random
zremoval“ of (1-q) nodes leaves NW ,unimpressed*
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° degree distr.: p~k< ;

® let g be the constant fraction of occupied (,functional”/ ,working*)
vertices

® > for vertex with degree k: fraction of occupied neighbors:
pl k)= (5)a* (1—q)*=*

*> probability that any node is connected to k™ occupied nodes is
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.rfemoval“ of (1-q) nodes leaves NW ,unimpressed*

¢ degree distr.: p~k* ;

® let g be the constan%fraction of occupied (,functional” / ,working®)
vertices

® > for vertex with degree k: fraction of occupied neighbors:
p o= (3)a" (1—q)*=*

*> probability that any node is connected to k™ occupied nodes is

, > Jl‘f A N N
pr = p(kj:zp(k’lk) p,ﬂf):ZPﬁC k) pk= Z Pk (A-’) ¢ (1 -t "
k ld =k’
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zremoval“ of (1-q) nodes leaves NW ,unimpressed*
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Frocesses on Networks: Percolation

° degree distr.: p~k< ;

® let q be the constan%fraction of occupied (,functional* / ,working®)
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® > for vertex with degree k: fraction of occupied neighbors:
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*> probability that any node is connected to k™ occupied nodes is
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of positive q: giant component always exists - random
.rfemoval“ of (1-q) nodes leaves NW ,unimpressed* B
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¢ degree distr.: p~k* ;

® let gy be the fraction of occupied vertices dependent on k (e.g.
remove / occupy only high degree nodes)
K

* > (analysis) = only a small fraction of the high degree nodes
needs to be removed to destroy the giant component

0.03

0.02

critical fraction

0.01

35

cxponent o [ 1 ]
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° degree distr.: p~k< ;

® let qx be the fraction of occupied vertices dependent on k (e.g.
remove / occupy only high degree nodes)
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¢ degree distr.: p~k* ;

® let gy be the fraction of occupied vertices dependent on k (e.g.
remove / occupy only high degree nodes)

* > (analysis) = only a small fraction of the high degree nodes
needs to be removed to destroy the giant component

y I
0.03

I
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I 35
cxponent o [1]
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® disease: nodes V = susceptibles U infectivei W recoveredr

* susceptibles: can be infected,;
infective: have the disease and are contageous,
recovered: have had the disease and are immune (or dead)

® infection probability / rate B , recovering probability y

® > SIR model (,fully mixed®):

ds . di . ) dr
= —/Jis — = (Fis — i, = i

dr ' dt : dr
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® disease: nodes V = susceptibles U infectivei W recoveredr

* susceptibles: can be infected,;
infective: have the disease and are contageous,
recovered: have had the disease and are immune (or dead)

® infection probability / rate B , recovering probability y
® > SIR model (,fully mixed®):

ds . di . ) dr
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dt s dt

® disease: nodes V = susceptible s U infectivei W recovered r

* susceptibles: can be infected;
infective: have the disease and are contageous,
recovered: have had the disease and are immune (or dead)

® infection probability / rate B , recovering probability y

® 5 SIR model (,fully mixed®):

ds ) di ) ) dr
— = —Jis, = [Jis — ~i, = i
dt
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® now: ,play® the model on a network (e.g. human contact network) and
investigate perlocation effects:|;

¢ B (infection probability per unit time) and vy (recovery prob. p.u.t.):
drawn from probability distributions P;(#) and P;(y) —> problem is

equivalent to edge-percolation problem with edge occupation

probability a

I'=1- / R(-”PT(‘;-)(‘_'%‘;" dgdr.

J0
¢ investigate dissociation into components (internally connected by
unoccupied egdes)

¢ corresp. phase transitions: transitions from epidemic outbreak

(giant component) vs. controlled state (small components)

®result: power law with a<3-> giant component also always exists
here
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® now: ,play“ the model on a network (e.g. human contact network) and
investigate perlocation effects:

¢ B (infection probability per unit time) and vy (recovery prob. p.u.t.):
drawn from probability distributions P;(#) and P;(y) —> problem is
equivalent to edge-percolation problem with edge occupation

probability a
r=1- / P,-(J)P,‘(‘;.)(‘._"i""" ds d~.
J0
¢ investigate dissociation into components (internally connected by
unoccupied egdes) R
°

corresp. phase transitions: transitions from epidemic outbreak
(giant component) vs. controlled state (small components)

®result: power law with a<3-> giant component also always exists
here

® We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of
vertex i (neglecting heuristic corrections):

x; = A1 ZJ Ajjx; for some A >0 E féx = Ax

® instead of only looking at in-degrees also look at high out-degree

® node with high in-degree ,from*“
highly (out-degree-)weighted nodes == Authority“ :

® hode with high out-degree ,to"
highly (in-degree-)weighted nodes == jHub®)

¢ in-degree based weights: x; out-degree-based weights y

Ay = \x, ATx = py > AATx = \ux
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® We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of

vertex i (neglecting heuristic corrections):

zi= A1 > Aija; for some A >0 > Ax=)x

® instead of only looking at in-degrees also look at high out-degree

® node with high in-degree ,from*
highly (out-degree-)weighted nodes ==  Authority“ :

® node with high out-degree ,tq“
highly (in-degree-)weighted nodes == ;Hub")

® in-degree based weights: x; out-degree-based weights y

Ay = \x, ATx = py > AATx = \ux

® We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of

vertex i (neglecting heuristic corrections):

zp=A"1 >, Aijxj for some A >0 > Ax=)x

® instead of only looking at in-degrees also look at high out-degree

® node with high in-degree ,from*“
highly (out-degree-)weighted nodes == Authority“ :

® hode with high out-degree ,to"
highly (in-degree-)weighted nodes == jHub®)

¢ in-degree based weights: x; out-degree-based weights y

Ay = A\x. ATx = uy > AATx = \ux
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® Instead of ,Search engine“-type of network search (one big crawl),
perform local crawls

° especially suitable in decentralized scenarios

K

® example: BFS: ,do you have the info*? either ,yes® or ,no, but will
forward to my nighbors® N

® variant by Adamic: instead of asking all neighbors : answer will be ,no
but i have k neighbors = asker can choose highest degree node to ,pass
on the query baton to“ = if e.g. power law: high degree nodes cover NW
very well.

®other variants: see next chapter
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very well.
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