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6 degrees of separation

6 degrees of separation

av. path length in real world SN is ~ 6

® First occurrence of a claim similar to 6 degrees: G. Marconi (Italian
Physicist & Nobel Prize laureate) 1909: Number of radio stations necc.
to cover inhabited world - any transmission path needs about 6
stations

ks
® 1920s: Hungarian writer F. Karinthy claims six degrees of separation
in Budapest in a short story (prob. inspired by Marconi)

® Most famous: S. Milgram (Inspired by unpublished paper by M.
Kochen & I. de Sola Pool claiming ~3 degrees in USA): “Small world
experiment” [20]. Randomly chosen people: mail letter to target person;
track record - ~ 6 av. Path length

Technical intermezzo: Clustering coefficient

® Popular culture: Erdés number / Kevin-Bacon Number / Erdés-Bacon-
Number

® Several newer experiments (see [20], [21]) on degree of separation
on the web (Facebook, Email-studies (D. Watts, Columbia U.) etc.) also
showed degree of separation ~ 6

® More thorough mathematical investigation - Random Graph Theory

® Watts and Strogatz [22] : Small World graph (informal): high clustering
coefficient, small mean av. Path-length I

Technical intermezzo: Clustering coefficient

® Undirected Graph: Clustering Coefficient C; of node v;: Measures
“how close” v; and its neighbors {v; € N;} (where neighborhood N; is
{Vj | {vi,vj} cE; Ec (g)} ) are to a complete subgraph (clique):

e..|v.v.eN Degree d,
C :|{ {kj}c|| dk 11 i of node v;:
40, -1) d=IN|
2
By

® Directed Graph: Clustering Coefficient C; of node v;: Measures “*how
close” v; ‘s neighbors {v. eN, =N™ UN"} (where out-neighborhood
Nowt is {v; [ (v,v,) € E; E c V x V}and in-neighborhood Nin, is
{v;|(v;,v;) e E; EC VxV}) are to a complete subgraph (clique):
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of node v;:

® Undirected Graph: Clustering Coefficient C; of node v;: Measures
“how close” v; and its neighbors {v; € N;} (where neighborhood N; is
{vj | {Vi’Vj} eE; Ec (\2/)} ) are to a complete subgraph (clique):
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® Directed Graph: Clustering Coefficient C; of node v;: Measures “how
close” v; ‘s neighbors {v. eN, =N UN"} (where out-neighborhood
Newis {v; [ (v,,v,) € E; E < V x V}and in-neighborhood Nin, is
{V;1(v;,v;) eE; EC VxV}) are to a complete subgraph (clique):

e |v,,v.eN Degree d,
izl{ g1 VioV; €N of node v;:
di(di -1) di=|Nil
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History of Social Network Analysis, Main Contributors

® Undirected Graph: Clustering Coefficient C; of node v;: Measures
“how close” v; and its neighbors {v; € N;} (where neighborhood N; is
{Vj | {Vi’Vj} eE; Ec (g)} ) are to a complete subgraph (clique):
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® Directed Graph: Clustering Coefficient C; of node v;: Measures “how
close” v; ‘s neighbors {v. eN, =N UN"} (where out-neighborhood
Newis {v; [ (v,,v,) € E; E < V x V}and in-neighborhood Nin, is
{V;1(v;,v;) eE; EC VxV}) are to a complete subgraph (clique):

. _ _ Degree d,
izl{ekjlvk’VJEN'}l of node v;:
di(di —1) . di=|Nj|

History of Social Network Analysis, Main Contributors

see e.g. [9]:

® Main contributing fields of science: Sociology (surprisingly ©),
Anthropology, Urban Studies, Mathematics (modeling & evaluation
formalisms), Physics (large community (surprisingly)), Computer
Science (graph algorithms etc.), Economic Sciences

® 1887: F. Tonnies (German sociologist): 2 basic “sorts” of groups:
Gemeinschaft (Family, Friends etc.; supported by “Wesenwille”) <>
Gesellschaft (Goal oriented; (I—Jﬁ'm, State etc.); supported by “Karwille™)

® 1911: G. Simmel (German sociologist): Sociability of humans
(especially in larger cities): One of the first to impose a “social network”
view

® 1930s-1950s: J. Moreno (American Psychiatrist & Sociologist): =
Sociometry (quantitative method for measuring social relationships) [11]

® 1930s-1960s: Further contributors: W. Warner (Harvard U.,
Anthropologist) [12] .= Native American social structures, E. Mayo
(Harvard U, Sociologist) [13]: Hawthorne Studies; A. Radcliffe-Brown
(Oxford U., Social Anthropologist): Structural Functionalism (&->
primitive civilizations); M. Gluckman (Manchester U., anthropologist):
Urban studies; etc.

e 1960s-1970s-present: H. White (Columbia U. Mathematical
Sociologist): Extremely influential contributor to formal SNA [14];
students: M. Granovetter, B. Wellman

¢ 2000s-present: A. Barabasi, 9. Watts, M. Newman, J. Kleinberg:
(,Physicists take over®), A. Pentland (Reality Mining) etc.
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Centrality

Centrality

® Centrality indices formalize intuitive feeling that some nodes (or
edges) are more central (important, meaningful etc.) than others.

® Interpretations of “centrality”: “influence”, “prestige”, “control”, “heavily
required for information flow”

® Example: n persons vote for a leader; (u,v) € E if v vofed for v, Winner
(most central node): node with most incoming edges (highest in-
degree).

- Degree Centrality

Other variant: (u,v) € E if u has convinced v to vote for u’s favorite
candidate. (Influence network) = node with large out-degree is central

® Other Example: If graph can be split up into groups X and Y and if
node u has many edges to X and many edges to Y - u mediates most
information between groups = u is central

- Betweenness centrality

General “Definition”: Structural Index

¢ Centrality indices formalize intuitive feeling that some nodes (or
edges) are more central (important, meaningful etc.) than others.

¢ Interpretations of “centrality”: “influence”, “prestige”, “control”, “heavily
required for information flow”

¢ Example: n persons vote for a leader; (u,v) € E if v voted for v, Winner
(most central node): node with most incoming edges (highest in-
degree).

- Degree Centrality

Other variant: (u,v) € E if u has convinced v to vote for u’s favorite
candidate. (Influence network) = node with large out-degree is central .
® Other Example: If graph can be split up into groups X and Y and if
node u has many edges to X and many edges to Y - u mediates most
information between groups - u is central

- Betweenness centrality

Distance- and Neighborhood-based Centralities

® “Importance” has many aspects but minimal def. for centrality: Only
depends on structure of graph:

® Structural Index: Let G = (V,E,w) be a weighted directed or undirected
multigraph. A function s: V 2 R (or s: E 2 R) is a structural index iff

Vx:G=H - s (x)=s,(#(x))
L

(Recall: Two graphs G and H are isomorphic (G=H) iff exists a bijective
mapping ®: G 2 H so that (u,v) € G iff (®(u),P(v)) €H)

® structural index induces order (=) on nodes/edges

*> centrality can usually only be viewed as measured on an ordinal
scale only (not interval or ratio scale)

¢ Centrality-measures defined on the basis of distances or
neighbourhoods in the graph:

Centrality of vertex € “reachability” of a vertex

Neighborhoods: Degree Centrality

® Most basic: Degree centrality: ¢(u) = deg(u) (or c(u)=in-deg(u) or
c(u) = out-deg(u)) - local mea[%sure

¢ Applicable: If edges have “direct vote” semantics



Distances: Eccentricity

Distances: Eccentricity

® Example: Facility location problems: Objective function on d(u,v): e.g.
minimax (minimize maximal distance (e.g.: hospital emergency)) 2 can
be mapped to social case

® For the moment: G is undirected and unweighted (e.g. “friendship”).
Mapping to weighted and / or directed case is possible.

® Eccentricity e(u)=max{d(u,v); veV}

Distances: Eccentricity

® Eccentricity e(u)=max{d(u,v); veV}

® Center ofa graph: Set of all nodes with minimum eccentricity

¢ Eccentricity based centrality measure:

e L 1
V= @)~ max{d(u,v) ver)

® > nodes in the center
of the graph have
maximal centrality ©

graph with
e(u) values
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Distances: Closeness

® Minisum problem: find nodes whose sum of distances to other nodes

is minimal (= service facility location problem): For all u minimize total
sum of minimal distances Zvevd(l[{gV)

® Social analog: Determine central figure for coordination tasks

® Example:

32
36 26 24 22 2

graph with X, _,d(u,v) values

Distances: Closeness

Distances: Closeness

® . . P . i
Possible resulting centrality index: closeness: Only applicable to
connected graphs;
c(u) = L disconnected graph:
Z d(u,v) all nodes will get the
vel same centrality 1/«

® Other possibility

> (Mg +1-d(u,v))

g Ag is the diameter
c(u) ==

V-1

of the graph

®if computed on directed graph: (set d(u,u) = 0 and set d(u,v) =0
if u,v are unreachable via directed path - problematic !): using in-
distances: ,integration, using out-distances ,radiality” (see [6])
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distances: ,integration”, using out-distances ,radiality” (see [6])
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distances: ,integration, using out-distances ,radiality” (see [6])
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Distances: Centroids

® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche”

® Formalization: For u, v : 1, (v)=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first

will have

1 1 1
7 (V) + 5(\ Vé—n W =7.() =7 V] 57 =7.)

customers
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® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche”

® Formalization: Foru, v : y,(v)=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first
will have
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Distances: Centroids

® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche”

® Formalization: For u, v : 1, (v)=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first
will have

mv)+;( V=7, () =7, () = ;| V) +;(n(V)—m(u))

customers

Distances: Centroids

® - Competitor will want to minimize
J@v)=y,0)=7r,@)

® > Possible centrality index: First salesman knows the strategy of the
competitor and calculates for each location the worst case:

c(u)y=min {f(u,v):veV /{u}}

® c(u) is called centroid value: measures the advantage of locatign u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v

® - Competitor will want to minimize
J@v)=y,0 =y, @)

® 5 Possible centrality index: First salesman knows the strategy of the
competitor and calculates foreach location the worst case:

e(u)y=min {f(u,v):veV /{u}}

® c(u) is called centroid value: measures the advantage of location u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v
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® - Competitor will want to minimize

J.v)=7,0)=7,@)

® > Possible centrality index: First salesman knows the strategy of the
competitor and calculates foreach location the worst case:

c(u)y=min {f(u,v):veV /{u}}
Iz 3

® c(u) is called centroid value: measures the advantage of location u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v

Shortest Paths

® - Competitor will want to minimize

JS@v)y=y,()=7. @)

® 5 Possible centrality index: First salesman knows the strategy of the
competitor and calculates for each location the worst case:

e(u)y=min {f(u,v):veV /{u}}

® c(u) is called centroid value: measures the advantage of location u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v N

Shortest Paths

® Indices of this section can be applied to weighted, unweighted,
directed, undirected and multigraphs and to edges and vertices (“graph
elements” x).

® Assume that set of all shortest paths APSP is known (e.g. by
application of Floyd Warshall algorithm in O(|V|T’) worst case time)

e Reminder:
® BFS: SSSP; O(|V|+|E|) worst case time complexity, edge-weights==1
e Djikstra: SSSP; O(|V] log|V| +|E|) with Fibonacci heap; edge-weights[}é 0

® Floyd Warshall: APSP, O(|V|?) worst case time, arbitrary weights, no negative cycles allowed
(but can be detected via the alg.), dynamic programming;

® Bellman Ford: SSSP; O(|V] |E]), arbitrary weights, no negative cycles allowed (but can be
detected via the alg.)

® Indices of this section can be applied to weighted, unweighted,
directed, undirected and multigraphs and to edges and vertices (“graph
elements” x).

® Assume that set of all shortest paths APSP is known (e.g. by
application of Floyd Warshall algorithm in O(|V|®) worst case time)

® Reminder:
® BFs: SSSP; O(|V|+|E|) worst case time complexity, edge-weights==1
* Djikstrg: S8SP; O(|V] log|V| +|E]) with Fibonacci heap; edge-weights = 0

® Floyd Warshall: APSP, O(|V|%) worst case time, arbitrary weights, no negative cycles allowed
(but can be detected via the alg.), dynamic programming;

® Bellman Ford: SSSP; O(|V] |E]), arbitrary weights, no negative cycles allowed (but can be
detected via the alg.)



Shortest Paths Shortest Paths

® Indices of this section can be applied to weighted, unweighted, ® Indices of this section can be applied to weighted, unweighted,
directed, undirected and multigraphs and to edges and vertices (“graph directed, undirected and multigraphs and to edges and vertices (“graph
elements” x). elements” x).
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Shortest Paths Shortest Paths: Stress

® Heuristic: If a vertex is part of many shortest paths 2 “much
information will run through it” if information is routed along shortest

paths

® Indices of this section can be applied to weighted, unweighted,
directed, undirected and multigraphs and to edges and vertices (“graph
elements” x).

® Social analog: People that are asked to contribute to a workflow

® Assume that set of all shortest paths APSP is known (e.g. by
more often than others

application of Floyd Warshall algorithm in O(]V|®) worst case time)

® > Avertex v is more central the more shortest paths run through it.
Let o,,(v) denote the number of shortest paths from node a to node b
containing v. oab(v}ian be >1 if there there are several paths with the
same minimal lengt

o Reminder:
® BFS: SSSP; O(|V|+|E|) worst case time complexity, edge-weights==
e Djikstra: SSSP; O(|V] log|V| +|E]) with Fibonacci heap; edge-weights = 0

Y . . . .
Floyd Warshall: APSP, O(|V|?) worst case time, arbitrary weights, no negative cycles allowed stress
cm= Y D 0,0

but can be detected via the alg.), dynamic programming; o
( 9), oy pred g centrality: B e O
® Bellman Ford: SS8SP; O(|V] |E]), arbitrary weights, no negative cycles allowed (but can be achazy 0=V

detected via the alg.) s



Shortest Paths: Stress Shortest Paths: Shortest Path Betweenness

® Again assume that communication (workflows etc.) happen along

° . shortest paths only. Let
Variant for edges:

c(e) = ZZ ) 5, (v)= (V)

acV beV O-ab [

with @, : total number of shortest paths between nodes a and b.

Interpretation. Probability that v is involved in a communication between

aandb
K
Shortest Paths: Shortest Path Betweenness Shortest Paths: Shortest Path Betweenness

® Again assume that communication (workflows etc.) happen along ® Again assume that communication (workflows etc.) happen along
shortest paths only. Let . shortest paths only. Let

o_ (v o, (v

5,0 = 7= 5,0 = 7
ab ab

with g, : total number of shortest paths between nodes a and b. with @, : total number of shortest paths between nodes a and b.
Interpretation. Probability that v is involved in a communication between Interpretation. Probability that v is involved in a communication between

aandb aandb



Shortest Paths: Stress

Shortest Paths: Shortest Path Betweenness

® Variant for edges:

c(e)=Y.> o,(e)

acV beV
ks

Shortest Paths: Shortest Path Betweenness

® Shortest Path Betweenness (SPB) centrality is then:
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a#v b#v

¢ Interpretation: Control that v exerts on the communication in the
graph

® Also applicable to disonnected graphs

¢ Algorithm by Ulrik Brandes computes SPB in O(|V||E| + |V|?log|V|)
time
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® Exam ple why shortest path betweenness centrality (now denoted as

c_SPB) might be more interesting than the basic stress centrality (now
denoted as c_S):

each @ has
c_S=(3)=28
c_SPB=1/3*28

O @ has
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