

Script generated by TTT

Title: groh: profile1 (06.05.2015)

Date: Wed May 06 08:13:57 CEST 2015

Duration: 91:37 min

Pages: 55

Long-Term Social Context: Social Networks

Social Network

slightly refined Social Network Model: Graph $G=(V,E,P_V,P_E,f_{P_V},f_{P_E})$

- Nodes $V = \bigcup_{i} V_i$: represent humans (actors) of "sorts" ($\leftarrow \rightarrow$ modes) V_i ;
- Edges $E \subseteq V \times V$; $E = \bigcup E_i$: represent directed binary social relations (ties) of "sorts" E_i
- O P_V: Set of Node Profiles
- O P_E: Set of Edge Profiles
- \circ $f_{P_V}: V \rightarrow P_V$
- \circ $f_{P_F}: V \rightarrow P_E$

Social Network

slightly refined Social Network Model: Graph $G=(V,E,P_V,P_E,f_{P_V},f_{P_E})$

- O Nodes $V = \bigcup V_i$: represent humans (actors) of "sorts" ($\leftarrow \rightarrow$ modes) V_i ;
- O Edges $E \subseteq V \times V$; $E = \biguplus E_i$: represent directed binary social relations (ties) of "sorts" E_i
- O P_V: Set of Node Profiles
- O P_E: Set of Edge Profiles
- \circ $f_{P_V}: V \rightarrow P_V$
- \circ $f_{P_E}: V \rightarrow P_E$

6 degrees of separation

av. path length in real world SN is ~ 6

- First occurrence of a claim similar to 6 degrees: G. Marconi (Italian Physicist & Nobel Prize laureate) 1909: Number of radio stations necc. to cover inhabited world → any transmission path needs about 6 stations
- 1920s: Hungarian writer F. Karinthy claims six degrees of separation in Budapest in a short story (prob. inspired by Marconi)
- Most famous: S. Milgram (Inspired by unpublished paper by M. Kochen & I. de Sola Pool claiming ~3 degrees in USA): "Small world experiment" [20]. Randomly chosen people: mail letter to target person; track record → ~ 6 av. Path length

6 degrees of separation

- Popular culture: Erdös number / Kevin-Bacon Number / Erdös-Bacon-Number
- Several newer experiments (see [20], [21]) on degree of separation on the web (Facebook, Email-studies (D. Watts, Columbia U.) etc.) also showed degree of separation ~ 6
- More thorough mathematical investigation → Random Graph Theory
- Watts and Strogatz [22]: Small World graph (informal): high clustering coefficient, small mean av. Path-length

 □

Technical intermezzo: Clustering coefficient

• Undirected Graph: Clustering Coefficient C_i of node v_i : Measures "how close" v_i and its neighbors $\{v_j \in N_i\}$ (where neighborhood N_i is $\{v_j \mid \{v_i, v_i\} \in E; \ E \subseteq \binom{v}{2}\}$) are to a complete subgraph (clique):

$$C_{i} = \frac{|\{e_{\{kj\}} | v_{k}, v_{j} \in N_{i}\}|}{\frac{d_{i}(d_{i} - 1)}{2}}$$

Degree d_i of node v_i: d_i=|N_i|

● Directed Graph: Clustering Coefficient C_i of node v_i : Measures "how close" v_i 's neighbors $\{v_j \in N_i = N_i^{out} \bigcup N_i^{in}\}$ (where out-neighborhood N^{out}_i is $\{v_j \mid (v_i, v_j) \in E; \ E \subseteq V \times V\}$ and in-neighborhood N^{in}_i is $\{v_j \mid (v_j, v_i) \in E; \ E \subseteq V \times V\}$) are to a complete subgraph (clique):

$$C_{i} = \frac{|\{e_{kj} | v_{k}, v_{j} \in N_{i}\}|}{d_{i}(d_{i}-1)}$$

Degree d_i of node v_i: d_i=|N_i|

Technical intermezzo: Clustering coefficient

• Undirected Graph: Clustering Coefficient C_i of node v_i : Measures "how close" v_i and its neighbors $\{v_j \in N_i\}$ (where neighborhood N_i is $\{v_i \mid \{v_i, v_i\} \in E; \ E \subseteq \binom{v}{2}\}$) are to a complete subgraph (clique):

$$C_{i} = \frac{|\{e_{\{kj\}} \mid v_{k}, v_{j} \in N_{i}\}\}|}{\frac{d_{i}(d_{i} - 1)}{2}}$$

Degree d_i of node v_i : $d_i=|N_i|$

Directed Graph: Clustering Coefficient C_i of node v_i : Measures "how close" v_i 's neighbors $\{v_j \in N_i = N_i^{out} \cup N_i^{in}\}$ (where out-neighborhood N^{out}_i is $\{v_j \mid (v_i, v_j) \in E; \ E \subseteq V \times V\}$ and in-neighborhood N^{in}_i is $\{v_i \mid (v_i, v_j) \in E; \ E \subseteq V \times V\}$) are to a complete subgraph (clique):

$$C_{i} = \frac{|\{e_{kj} | v_{k}, v_{j} \in N_{i}\}|}{d_{i}(d_{i} - 1)}$$

Degree d_i of node v_i: d_i=|N_i|

Technical intermezzo: Clustering coefficient

• Undirected Graph: Clustering Coefficient C_i of node v_i : Measures "how close" v_i and its neighbors $\{v_j \in N_i\}$ (where neighborhood N_i is $\{v_i \mid \{v_i, v_i\} \in E; E \subset \binom{V}{2}\}$) are to a complete subgraph (clique):

$$C_{i} = \frac{\left| \left\{ e_{\left\{kj\right\}} \mid v_{k}, v_{j} \in N_{i} \right\} \right|}{\frac{d_{i}(d_{i} - 1)}{2}}$$

Degree d_i of node v_i: d_i=|N_i|

Directed Graph: Clustering Coefficient C_i of node v_i : Measures "how close" v_i 's neighbors $\{v_j \in N_i = N_i^{out} \bigcup N_i^{in}\}$ (where out-neighborhood N^{out}_i is $\{v_j \mid (v_i, v_j) \in E; \ E \subseteq V \times V\}$ and in-neighborhood N^{in}_i is $\{v_j \mid (v_j, v_j) \in E; \ E \subseteq V \times V\}$) are to a complete subgraph (clique):

$$C_{i} = \frac{|\{e_{kj} \mid v_{k}, v_{j} \in N_{i}\}|}{d.(d.-1)}$$

Degree d_i of node v_i: d_i=|N_i|

History of Social Network Analysis, Main Contributors

see e.g. [9]:

- Main contributing fields of science: Sociology (surprisingly ☺), Anthropology, Urban Studies, Mathematics (modeling & evaluation formalisms), Physics (large community (surprisingly)), Computer Science (graph algorithms etc.), Economic Sciences
- 1887: F. Tönnies (German sociologist): 2 basic "sorts" of groups: Gemeinschaft (Family, Friends etc.; supported by "Wesenwille") ← → Gesellschaft (Goal oriented; (Firm, State etc.); supported by "Kürwille")
- 1911: G. Simmel (German sociologist): Sociability of humans (especially in larger cities): One of the first to impose a "social network" view

Technical intermezzo: Clustering coefficient

• Undirected Graph: Clustering Coefficient C_i of node v_i : Measures "how close" v_i and its neighbors $\{v_j \in N_i\}$ (where neighborhood N_i is $\{v_j \mid \{v_i, v_j\} \in E; \ E \subseteq \binom{v}{2}\}$) are to a complete subgraph (clique):

$$C_{i} = \frac{|\{e_{\{kj\}} \mid v_{k}, v_{j} \in N_{i}\}\}|}{\frac{d_{i}(d_{i} - 1)}{2}}$$

Degree d_i of node v_i: d_i=|N_i|

Directed Graph: Clustering Coefficient C_i of node v_i : Measures "how close" v_i 's neighbors $\{v_j \in N_i = N_i^{out} \cup N_i^{in}\}$ (where out-neighborhood N^{out}_i is $\{v_j \mid (v_i, v_j) \in E; \ E \subseteq V \times V\}$ and in-neighborhood N^{in}_i is $\{v_i \mid (v_i, v_j) \in E; \ E \subseteq V \times V\}$) are to a complete subgraph (clique):

$$C_{i} = \frac{\left|\left\{e_{kj} \mid v_{k}, v_{j} \in N_{i}\right\}\right|}{d_{i}(d_{i} - 1)}$$

Degree d_i of node v_i: d_i=|N_i|

History of Social Network Analysis, Main Contributors

- 1930s-1950s: J. Moreno (American Psychiatrist & Sociologist): → Sociometry (quantitative method for measuring social relationships) [11]
- 1930s-1960s: Further contributors: W. Warner (Harvard U., Anthropologist) [12] :→ Native American social structures, E. Mayo (Harvard U., Sociologist) [13]: Hawthorne Studies; A. Radcliffe-Brown (Oxford U., Social Anthropologist): Structural Functionalism (←→ primitive civilizations); M. Gluckman (Manchester U., anthropologist): Urban studies; etc.
- 1960s-1970s-present: H. White (Columbia U. Mathematical Sociologist): Extremely influential contributor to formal SNA [14]; students: M. Granovetter, B. Wellman
- 2000s-present: A. Barabasi, ⑤. Watts, M. Newman, J. Kleinberg: ("Physicists take over"), A. Pentland (Reality Mining) etc.

History of Social Network Analysis, Main Contributors

- 1930s-1950s: J. Moreno (American Psychiatrist & Sociologist): → Sociometry (quantitative method for measuring social relationships) [11]
- 1930s-1960s: Further contributors: W. Warner (Harvard U., Anthropologist) [12]: → Native American social structures, E. Mayo (Harvard U., Sociologist) [13]: Hawthorne Studies; A. Radcliffe-Brown (Oxford U., Social Anthropologist): Structural Functionalism (←→ primitive civilizations); M. Gluckman (Manchester U., anthropologist): Urban studies; etc.
- 1960s-1970s-present: H. White (Columbia U. Mathematical Sociologist): Extremely influential contributor to formal SNA [14]; students: M. Granovetter, B. Wellman
- 2000s-present: A. Barabasi, D. Watts, M. Newman, J. Kleinberg: ("Physicists take over"), A. Pentland (Reality Mining) etc.

History of Social Network Analysis, Main Contributors

- 1930s-1950s: J. Moreno (American Psychiatrist & Sociologist): → Sociometry (quantitative method for measuring social relationships) [11]
- 1930s-1960s: Further contributors: W. Warner (Harvard U., Anthropologist) [12] :→ Native American social structures, E. Mayo (Harvard U., Sociologist) [13]: Hawthorne Studies; A. Radcliffe-Brown (Oxford U., Social Anthropologist): Structural Functionalism (←→ primitive civilizations); M. Gluckman (Manchester U., anthropologist): Urban studies; etc.
- 1960s-1970s-present: H. White (Columbia U. Mathematical Sociologist): Extremely influential contributor to formal SNA [14]; students: M. Granovetter, B. Wellman
- 2000s-present: A. Barabasi, D. Watts, M. Newman, J. Kleinberg: ("Physicists take over"). A. Pentland (Reality Mining) etc.

History of Social Network Analysis, Main Contributors

- 1930s-1950s: J. Moreno (American Psychiatrist & Sociologist): → Sociometry (quantitative method for measuring social relationships) [11]
- 1930s-1960s: Further contributors: W. Warner (Harvard U., Anthropologist) [12] :→ Native American social structures, E. Mayo (Harvard U., Sociologist) [13]: Hawthorne Studies; A. Radcliffe-Brown (Oxford U., Social Anthropologist): Structural Functionalism (←→ primitive civilizations); M. Gluckman (Manchester U., anthropologist): Urban studies; etc.
- 1960s-1970s-present: H. White (Columbia U. Mathematical Sociologist): Extremely influential contributor to formal SNA [14]; students: M. Granovetter, B. Wellman
- [•] 2000s-present: A. Barabasi, D. Watts, M. Newman, J. Kleinberg: ("Physicists take over"), A. Pentland (Reality Mining) etc.

History of Social Network Analysis, Main Contributors

- 1930s-1950s: J. Moreno (American Psychiatrist & Sociologist): →
 Sociometry (quantitative method for measuring social relationships) [11]
- 1930s-1960s: Further contributors: W. Warner (Harvard U., Anthropologist) [12] :→ Native American social structures, E. Mayo (Harvard U., Sociologist) [13]: Hawthorne Studies; A. Radcliffe-Brown (Oxford U., Social Anthropologist): Structural Functionalism (←→ primitive civilizations); M. Gluckman (Manchester U., anthropologist): Urban studies; etc.
- 1960s-1970s-present: H. White (Columbia U. Mathematical Sociologist): Extremely influential contributor to formal SNA [14]; students: M. Granovetter, B. Wellman
- 2000s-present: A. Barabasi, D. Watts, M. Newman, J. Kleinberg: ("Physicists take over"), A. Pentland (Reality Mining) etc.

Centrality

- Centrality indices formalize intuitive feeling that some nodes (or edges) are more central (important, meaningful etc.) than others.
- Interpretations of "centrality": "influence", "prestige", "control", "heavily required for information flow"
- **Example**: n persons vote for a leader; $(u,v) \in E$ if u voted for v, Winner (most central node): node with most incoming edges (highest indegree).
- → Degree Centrality \bigcirc Other variant: $(u,v) \in \stackrel{\triangleright}{E}$ if u has convinced v to vote for u's favorite candidate. (Influence network) → node with large out-degree is central
- Other Example: If graph can be split up into groups X and Y and if node u has many edges to X and many edges to Y \rightarrow u mediates most information between groups \rightarrow u is central
- → Betweenness centrality

General "Definition": Structural Index

- "Importance" has many aspects but minimal def. for centrality: Only depends on structure of graph:
- Structural Index: Let G = (V,E,w) be a weighted directed or undirected multigraph. A function s: $V \rightarrow \mathbb{R}$ (or s: $E \rightarrow \mathbb{R}$) is a structural index iff

$$\forall x : G \cong H \to s_G(x) = s_H(\phi(x))$$

(Recall: Two graphs G and H are isomorphic (G \simeq H) iff exists a bijective mapping Φ : G \rightarrow H so that $(u,v) \in G$ iff $(\Phi(u),\Phi(v)) \in H$)

- structural index induces order (≤) on nodes/edges
- centrality can usually only be viewed as measured on an ordinal scale only (not interval or ratio scale)

Centrality

- Centrality indices formalize intuitive feeling that some nodes (or edges) are more central (important, meaningful etc.) than others.
- Interpretations of "centrality": "influence", "prestige", "control", "heavily required for information flow"
- **Example**: n persons vote for a leader; $(u,v) \in E$ if u voted for v, Winner (most central node): node with most incoming edges (highest indegree).
- → Degree Centrality

Other variant: $(u,v) \in E$ if u has convinced v to vote for u's favorite candidate. (Influence network) \rightarrow node with large out-degree is central

- Other Example: If graph can be split up into groups X and Y and if node u has many edges to X and many edges to Y → u mediates most information between groups → u is central
- → Betweenness centrality

Distance- and Neighborhood-based Centralities

Centrality-measures defined on the basis of distances or neighbourhoods in the graph:

Centrality of vertex ← → "reachability" of a vertex

Neighborhoods: Degree Centrality

- Most basic: Degree centrality: c(u) = deg(u) (or c(u)=in-deg(u) or c(u) = out-deg(u)) → local measure
- Applicable: If edges have "direct vote" semantics

Distances: Eccentricity

- Example: Facility location problems: Objective function on d(u,v): e.g. minimax (minimige maximal distance (e.g.: hospital emergency)) → can be mapped to social case
- For the moment: G is undirected and unweighted (e.g. "friendship"). Mapping to weighted and / or directed case is possible.
- Eccentricity e(u)=max{d(u,v); v∈V}

Distances: Eccentricity

- Eccentricity e(u)=max{d(u,v); v∈V}
- Center of a graph: Set of all nodes with minimum eccentricity
- Eccentricity based centrality measure:

$$c(u) = \frac{1}{e(u)} = \frac{1}{\max\{d(u, v) : v \in V\}}$$

• → nodes in the center of the graph have maximal centrality ©

Distances: Eccentricity

- Eccentricity e(u)=max{d(u,v); v∈V}
- Center of a graph: Set of all nodes with minimum eccentricity
- Eccentricity based centrality measure:

$$c(u) = \frac{1}{e(u)} = \frac{1}{\max\{d(u, v) : v \in V\}}$$

→ nodes in the center of the graph have maximal centrality ©

Distances: Eccentricity

- Eccentricity e(u)=max{d(u,v); v∈V}
- Center of a graph: Set of all nodes with minimum eccentricity
- Eccentricity based centrality measure:

$$c(u) = \frac{1}{e(u)} = \frac{1}{\max\{d(u, v) : v \in V\}}$$

• → nodes in the center of the graph have maximal centrality ©

Distances: Closeness

- Minisum problem: find nodes whose sum of distances to other nodes is minimal (\rightarrow service facility location problem): For all u minimize total sum of minimal distances $\sum_{v \in V} d(v,v)$
- Social analog: Determine central figure for coordination tasks
- Example:

graph with $\sum_{v \in V} d(u,v)$ values

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$

 Δ_{G} is the diameter of the graph

• if computed on directed graph: (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path \rightarrow problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$

 Δ_G is the diameter of the graph

• if computed on directed graph: (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path → problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{u \in V} d(u, v)}$$

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$

 Δ_G is the diameter of the graph

• if computed on directed graph: (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path \rightarrow problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs: disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

• if computed on directed graph: (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path → problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$

 Δ_{G} is the diameter of the graph

• if computed on directed graph: (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path → problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs: disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$

 Δ_{G} is the diameter of the graph

• if computed on directed graph; (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path → problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Distances: Centroids

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche"
- Formalization: For u, v : $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_{u}(v) + \frac{1}{2}(|V| - \gamma_{u}(v) - \gamma_{v}(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_{u}(v) - \gamma_{v}(u))$$

customers

Distances: Centroids

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche"
- Formalization: For u, v: $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_u(v) + \frac{1}{2}(|V| - \gamma_u(v) - \gamma_v(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_u(v) - \gamma_v(u))$$

customers

Distances: Centroids

◆ Competitor will want to minimize

$$f(u,v) = \gamma_u(v) - \gamma_v(u)$$

◆ Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

• c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v

Distances: Centroids

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche"
- Formalization: For u, v: $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_{u}(v) + \frac{1}{2}(|V| - \gamma_{u}(v) - \gamma_{v}(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_{u}(v) - \gamma_{v}(u))$$

customers

Distances: Centroids

◆Competitor will want to minimize

$$f(u, v) = \gamma_u(v) - \gamma_v(u)$$

Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

• c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v Competitor will want to minimize

$$f(u, v) = \gamma_u(v) - \gamma_v(u)$$

Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

• c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v ◆Competitor will want to minimize

$$f(u, v) = \gamma_u(v) - \gamma_v(u)$$

→ Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

• c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v

Shortest Paths

- Indices of this section can be applied to weighted, unweighted, directed, undirected and multigraphs and to edges and vertices ("graph elements" x).
- Assume that set of all shortest paths APSP is known (e.g. by application of Floyd Warshall algorithm in $O(|V|_{,}^{3})$ worst case time)
- Reminder:
 - BFS: SSSP; O(|V|+|E|) worst case time complexity, edge-weights==1
 - Djikstra: SSSP; O(|V| log|V| +|E|) with Fibonacci heap; edge-weights ≥ 0
 - Floyd Warshall: APSP, $O(|V|^3)$ worst case time, arbitrary weights, no negative cycles allowed (but can be detected via the alg.), dynamic programming;
 - $^{\bullet}$ Bellman Ford: SSSP; O(|V| |E|), arbitrary weights, no negative cycles allowed (but can be detected via the alg.)

Shortest Paths

- Indices of this section can be applied to weighted, unweighted, directed, undirected and multigraphs and to edges and vertices ("graph elements" x).
- Assume that set of all shortest paths APSP is known (e.g. by application of Floyd Warshall algorithm in $O(|V|^3)$ worst case time)
- Reminder:
 - BFS: SSSP; O(|V|+|E|) worst case time complexity, edge-weights==1
 - Djikstra: SSSP; O(|V| log|V| +|E|) with Fibonacci heap; edge-weights ≥ 0
 - Floyd Warshall: APSP, $O(|V|^3)$ worst case time, arbitrary weights, no negative cycles allowed (but can be detected via the alg.), dynamic programming;
 - $^{\bullet}$ Bellman Ford: SSSP; O(|V| |E|), arbitrary weights, no negative cycles allowed (but can be detected via the alg.)

elements" x).

- Indices of this section can be applied to weighted, unweighted, directed, undirected and multigraphs and to edges and vertices ("graph elements" x).
- Assume that set of all shortest paths APSP is known (e.g. by application of Floyd Warshall algorithm in $O(|V|^3)$ worst case time)
- Reminder:
 - BFS: SSSP; O(|V|+|E|) worst case time complexity, edge-weights==1
 - Djikstra: SSSP; O(|V| log|V| +|E|) with Fibonacci heap; edge-weights ≥ 0
 - Floyd Warshall: APSP, $O(|V|^3)$ worst case time, arbitrary weights, no negative cycles allowed (but can be detected via the alg.), dynamic programming;
 - Bellman Ford: SSSP; O(|V| |E|), arbitrary weights, no negative cycles allowed (but can be detected via the alg.)

Shortest Paths

- Indices of this section can be applied to weighted, unweighted, directed, undirected and multigraphs and to edges and vertices ("graph elements" x).
- Assume that set of all shortest paths APSP is known (e.g. by application of Floyd Warshall algorithm in $O(|V|^3)$ worst case time)
- Reminder:
 - BFS: SSSP; O(|V|+|E|) worst case time complexity, edge-weights==1
 - Djikstra: SSSP; O(|V| log|V| +|E|) with Fibonacci heap; edge-weights ≥ 0
 - Floyd Warshall: APSP, $O(|V|^3)$ worst case time, arbitrary weights, no negative cycles allowed (but can be detected via the alg.), dynamic programming;
 - $^{\bullet}$ Bellman Ford: SSSP; O(|V| |E|), arbitrary weights, no negative cycles allowed (but can be detected via the alg.)

detected via the alg.)

Reminder:

Shortest Paths: Stress

• Heuristic: If a vertex is part of many shortest paths → "much information will run through it" if information is routed along shortest paths

• Indices of this section can be applied to weighted, unweighted.

Assume that set of all shortest paths APSP is known (e.g. by

BFS: SSSP; O(|V|+|E|) worst case time complexity, edge-weights==1

(but can be detected via the alg.), dynamic programming;

Diikstra: SSSP: O(IVI logIVI +IEI) with Fibonacci heap; edge-weights ≥ 0

application of Floyd Warshall algorithm in O(IVI3) worst case time)

directed, undirected and multigraphs and to edges and vertices ("graph

Floyd Warshall: APSP, O(|V|3) worst case time, arbitrary weights, no negative cycles allowed

Bellman Ford: SSSP: O(IVI IEI), arbitrary weights, no negative cycles allowed (but can be

- Social analog: People that are asked to contribute to a workflow more often than others
- A vertex v is more central the more shortest paths run through it. Let $\sigma_{ab}(v)$ denote the number of shortest paths from node a to node b containing v. $\sigma_{ab}(v)$ can be >1 if there there are several paths with the same minimal length

stress
$$c(v)$$

$$c(v) = \sum_{a \in V; a \neq v} \sum_{b \in V; b \neq v} \sigma_{ab}(v)$$

Variant for edges:

$$c(e) = \sum_{a \in V} \sum_{b \in V} \sigma_{ab}(e)$$

Dr.

Shortest Paths: Shortest Path Betweenness

 $^{\bullet}$ Again assume that communication (workflows etc.) happen along shortest paths only. Let

$$\delta_{ab}(v) = \frac{\sigma_{ab}(v)}{\sigma_{ab}}$$

with σ_{ab} : total number of shortest paths between nodes a and b.

Interpretation. Probability that v is involved in a communication between a and b

 Again assume that communication (workflows etc.) happen along shortest paths only. Let

$$\delta_{ab}(v) = \frac{\sigma_{ab}(v)}{\sigma_{ab}}$$

with σ_{ab} : total number of shortest paths between nodes a and b.

Interpretation. Probability that v is involved in a communication between a and b

Shortest Paths: Shortest Path Betweenness

 Again assume that communication (workflows etc.) happen along shortest paths only. Let

$$\delta_{ab}(v) = \frac{\sigma_{ab}(v)}{\sigma_{ab}}$$

with σ_{ab} : total number of shortest paths between nodes a and b.

Interpretation. Probability that v is involved in a communication between a and b

Variant for edges:

$$c(e) = \sum_{a \in V} \sum_{b \in V} \sigma_{ab}(e)$$

Shortest Paths: Shortest Path Betweenness

• Shortest Path Betweenness (SPB) centrality is then:

$$c(v) = \sum_{a \neq v} \sum_{b \neq v} \delta_{ab}(v)$$

- ${}^{\bullet}$ Interpretation: Control that v exerts on the communication in the graph ${}_{\Bbbk}$
- Also applicable to disonnected graphs
- Algorithm by Ulrik Brandes computes SPB in O(|V||E| + |V|²log|V|) time

Shortest Path Betweenness (SPB) centrality is then:

$$c(v) = \sum_{a \neq v} \sum_{b \neq v} \delta_{ab}(v)_{\triangleright}$$

- Interpretation: Control that v exerts on the communication in the graph
- Also applicable to disonnected graphs
- Algorithm by Ulrik Brandes computes SPB in O(|V||E| + |V|²log|V|) time

Shortest Paths: Shortest Path Betweenness

• Shortest Path Betweenness (SPB) centrality is then:

$$c(v) = \sum_{a \neq v} \sum_{b \neq v} \delta_{ab}(v)$$

- Interpretation: Control that v exerts on the communication in the graph
- Also applicable to disonnected graphs

Shortest Paths: Shortest Path Betweenness

• Example why shortest path betweenness centrality (now denoted as c_SPB) might be more interesting than the basic stress centrality (now denoted as c_S):

Shortest Paths: Shortest Path Betweenness

Example why shortest path betweenness centrality (now denoted as c_SPB) might be more interesting than the basic stress centrality (now denoted as c_S):

Shortest Paths: Shortest Path Betweenness

Shortest Path Betweenness (SPB) centrality is then:

$$c(v) = \sum_{a \neq v} \sum_{b \neq v} \delta_{ab}(v)$$

- $\begin{tabular}{l} \bullet \\ \end{tabular}$ Interpretation: Control that v exerts on the communication in the graph
- Also applicable to disonnected graphs
- Algorithm by Ulrik Brandes computes SPB in O(|V||E| + |V|²log|V|) time

Shortest Paths: Shortest Path Betweenness

Example why shortest path betweenness centrality (now denoted as c_SPB) might be more interesting than the basic stress centrality (now denoted as c_S):

