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Extension 3

Sometimes, one loop alone does not provide enough opportunities

for parallelization.

... but perhaps two successively in a row ...

Example

for (z=0;z < nja++) {

By Blal;
S/|: Clz];
Ty = Bt S;
Als] f)led
1

for (x=0;2 <njz++) {

R= Blal;

S= Clz];
=Ry
1

Extension 3

Sometimes, one loop alone does not provide enough opportunities
for parallelization.

... but perhaps two successively in a row ...

Example

for (x =0;z <n;z++) { for (z =0;2 <mz++) {

R = Blz]; R = Bz];
S = Clz]; S = Clz;
T, =R+ S; T, =R-S;
A[ﬂf} iTl; C[CL’} iTz;
} }
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Extension 3

Sometimes, one loop alone does not provide enough opportunities
for parallelization.

... but perhaps two successively in a row ...

Example

for (x=0;z < njz++) { for (x=0;z < njz++) {

R = Bla); R=Blz);
S = Clz]; S=Clz];
Ty =R+ S5, To=R-S5,
Alz] = Ty, Clx| = Ty;

} t
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In order to fuse two loops into one, we require that:

e the iteration schemes coincide;
e the two loops access different data.

In case of individual variables, this can easily be verified.
This is more difficult in presence of arrays.

Taking the source program into account, accesses to distinct
statically allocated arrays can be identified.

An analysis of accesses to the same array is significantly more
difficult ...
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The first loop may in iteration = not read data which the second
loop writes to in iterations < z.

The second loop may in iteration = not read data which the first
loop writes to in iterations > .

If the index expressions of jointly accessed arrays are linear, the
given constraints can be verified through integer linear
programming ...

Twrite = i
1 = 0
. Tregad = T
1 < -1
Tread = Twrite

I .4 read access to C by 1st loop
I i Write access to C by 2nd loop

... obviously has no solution.
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Assume that the blocks A, B, C' are distinct.

Then we can combine the two loops into:

for (x=0;2z <n;z++) {

R= Blal;
§ = Clz];
Ty =R+ S5,
Alz] = Ty;

Assume that the blocks A, B, C' are distinct.

Then we can combine the two loops into:

for (x =0,z <n;z++) {

R = Blz];
S =Clz];
T, =R+ S;
Az =Ty;
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R = Blz];
§=Clz];
T,=R- S5,
Clz] =Ty
}

R = Blzl;
5= Clz};
T,=R-8S;
Clz] = T3;
1



The first loop may in iteration = not read data which the second
loop writes to in iterations < =z .

The second loop may in iteration z not read data which the first
loop writes to in iterations > z .

If the index expressions of jointly accessed arrays are linear, the
given constraints can be verified through integer linear
programming ...

A
. < = X
Twrite = 1
Tread = T
Tread = Twrite

I z..q read access to C by 1st loop
I e Write access to C by 2nd loop

... obviously has no solution.
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Simple Case:

The two inequations have no solution over Q.
Then they also have no solution over 7.

... in Qur Example:

i

5
Il

) = x

A IA

r—1—1|= -1

The second inequation has no solution.
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General Form:

s = 1y
ta > s

Y1 = 5
Y2 = 82
o= U2

for linear expressions s, t,1,, 51,5, over ¢ and the iteration
variables.

This can be simplified to:

Uﬁ“i*h Uﬁtz*:i Ui“il*b’z

What should we do with it 2?7
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One Variable:

The inequations where =z  occurs positive, provide lower
bounds.

The inequations where =z  occurs negative, provide upper
bounds.

If G,L arethe greatest lower and the least upper bound,
respectively, then all (integer) solution are in the interval |G, L].

Example
0 < 13 x

< .

0 < —-1+5-z r >

IA
= i

n3

1 ‘=
3/ 00

The only integer solution of the systemis = = 1.
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Discussion Discussion ‘ ?A ’

e  Solutions only matter within the bounds to the iteration e Integer Linear Programming (ILP) can decide satisfiability of a
variables. finite set of equations/inequations over 7 of the form:

e Every integer solution there provides a conflict. i
a; - I 2 b . a; € Z

1=1 {

¢ Moreover, a (linear) cost function can be optimized.

n
. . L . a;-x; =b bzw.
e Fusion of loops is possible if no conflicts occur. ; L

« The given special case suffices to solve the case one variable

over Z.
¢ Warning: The decision problem is in general, already

NP-hard !!!

« Notwithstanding that, surprisingly efficient implementations
exist.

e  The number of variables in the inequations corresponds to the
nesting-depth of for-loops == in general, is quite small.

¢ Not just loop fusion, but also other re-organizations of loops
yield ILP problems ...
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, < ,Lj Discussion
T~

e Integer Linear Programming (ILP) can decide satisfiability of a

ny)
X

5 finite set of equations/inequations over 7 of the form:
( T '7 n n
y \\F\ Zai-a:i:b bZW. Zai-:rizb, CLL‘EZ
'd /; O i=1 1=1
C /\ * Moreover, a (linear) cost function can be optimized.
\< L e e Warning: The decision problem is in general, already
NP-hard !!!
« Notwithstanding that, surprisingly efficient implementations

exist.

e Not just loop fusion, but also other re-organizations of loops
yield ILP problems ...
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Background 5: Presburger Arithmetic

Many problems in computer science can be formulated without
multiplication.

Let us first consider two simple special cases ...

1. Linear Equations

®

y + 5z = 3

24
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Answers

e |s there a solutionover @ ? Yes

e |s there a solution over Z 7?7 No

e Is there a solution over N ? No

Complexity

e |s there a solutionover @ 7 Polynomial
e |s there a solution over Z 7 Polynomial

e Is there a solution over N ? NP-hard
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Question

8 .
o |s there a solution over @ ?

)

o |s there a solution over 7 ?

2
N

e Is there a solution over

Let us reconsider the equations:

2+ 3y = 24
x y + 5z = 3
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Solution Method for Integers

Observation 1

b (Vi: a; #0)

has a solution

ged{ay,...,ax} | b
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Example

Example

by — 10z =18

has no solution over Z.
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2r + 3y = 24
T y + 5z = 3

6390

Example
by — 10z =18

has no solution over Z.

Observation 2

Adding a multiple of one equation to another does not change the
set of solutions.
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Example

2r + 3y = 24
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Observation 3 Observation 4

Adding multiples of columns to another column is an invertible

transformation which we keep track of in a separate matrix ... e A special solution of a triangular system can be directly read

off.

100 5y 10z = 18 _ _

e All solutions of a homogeneous triangular system can be

01 0=z y + 5z = 3 .
directly read off.

001

—_ e All solutions of the original system can be recovered from the

solutions of the triangular system by means of the

100 5y = 18 accumulated transformation matrix.

01 2|z y + 3z = 3

0
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Observation 3 Observation 4

Adding multiples of columns to another column is an invertible

transformation which we keep track of in a separate matrix ... e A special solution of a triangular system can be directly read

off.
10 0 5y = 18 _ ,
« All solutions of a homogeneous triangular system can be
01 2=z y + 3z = 3 .
directly read off.
00 1
. e All solutions of the original system can be recovered from the
solutions of the triangular system by means of the
10 -3 ‘% = 1& accumulated transformation matrix.
01 2|z Y = 3
00

— triangular form !!
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Example

One special solution:
[6,3,0]"

All solutions of the homogeneous system are spanned by:

[0,0,1]"

695

Solving over N

[ ]

... is of major practical importance;

L]

... has led to the development of many new technigues;

[ ]

... easily allows to encode NP-hard problems;

[ ]

... remains difficult if just three variables are allowed per
equation.

696

Example
1 3 5y = 15
01 2|z Y = 3
00 1

One special solution:
[6,3,0]"

All solutions of the homogeneous system are spanned by:

[0,0,1]7

695

Solving over N

[ ]

... is of major practical importance;

L]

... has led to the development of many new techniques;

... easily allows to encode NP-hard problems;

... remains difficult if just three variables are allowed per
equation.

696



Idea:

Idea:

Represent the system by a graph:

[

19
-7

oW

13
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Represent the system by a graph:

698

2. One Polynomial Special Case

x > y+95
=g
y = 13
y = xr—1
. There are at most 2 variables per in-equation;

. no scaling factors.
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The in-equations are satisfiable iff
e the weight of every cycle are at most  0;

» the weights of paths reaching = are bounded by the weights of
edges from z into the sink.
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Idea: Represent the system by a graph:

698

3. A General Solution Method
Idea: Fourier-Motzkin Elimination

e Successively remove individual variables = !

¢ Allin-equations with positive occurrences of = vyield lower
bounds.
s Allin-equations with negative occurrences of = yield

upper bounds.

e All lower bounds must be at most as big as all upper bounds.

706

-7
P
CEeo
N .

5

13+5 < 19

704

3. A General Solution Method

Idea: Fourier-Motzkin Elimination

Successively remove individual variables = !

All in-equations with positive occurrences of = yield lower
bounds.
All in-equations with negative occurrences of = yield

upper bounds.

All lower bounds must be at most as big as all upper bounds.
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The in-equations are satisfiable iff

[

T » the weight of every cycle are at most  (;
19
=7

« the weights of paths reaching z are bounded by the weights of
NN ; ;
Q /‘ B edges from z into the sink.

5

13+5 < 19

Compute the reflexive and transitive closure of the edge weights!
(oA V2> o e Nl et )
Y R |~ | 8 /\? o
o
¥ S

- | A% 1%

704 705

Jean Baptiste Joseph Fourier, 1768—-1830 Jean Baptiste Joseph Fourier, 1768-1830
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3. A General Solution Method

Idea:

For

4

0

6
—11
—17
—4

Fourier-Motzkin Elimination

Successively remove individual variables = !

All in-equations with positive occurrences of +  vyield lower
bounds.
All in-equations with negative occurrences of = yield

upper bounds.

All lower bounds must be at most as big as all upper bounds.

706

£y we obtain:

< Az + 22 (1) < o (1)
< 29+ 219 (2) 4— 2z, < 1y (2)
< 21 — 39 (3) 322 < 1 (3)
< x1+4 629 (4) 6 —6x: < (4)
< —x1— 222 (H) r S (5)
< —6r; + 2z, (6) r'y < 1—67 +3r2  (0)
< -1y (7) —4 < —@p (7)

If such an =, exists, all lower bounds must be bounded by all upper
bounds, i.e.,
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Example

9
0
6
—11
—17
—4
1w
i
4 — 224
4 — 2z,
372
6 — 6y
6 — 6z,
—4

IA A A TN IA I TN IA

IA

11 - 2z,

17 1
T t 3T
11 — 224
17 1
® T g2
11 — 224
17 1
T t 3T
11 — 2z,
17 1
T t 3T

—1Io
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6
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2z < 11-2z,  (L,5) —35 < —Txy (1,5)
%— %Ig < % + %Ig (1,6) —1—72 < %1"2 (1,6)
4—2my < 11—-225  (2,5) -7 <0 (2,5)
4-2m, < T43m2  (2,6) P i (2,6)
try < 11-2z,  (3,5) or -22 < 5z, (3,5)
302 < Y +im (3,6) —T <t (3,6)
6— 6z, < 11—225  (4,5) —5 < 4m, (4,5)
6—6r, < T+322  (4,6) ¥ < Pay (4,6)
—4 E —I2 (7) —4 § —I2 (7)
710
1] _5 1 . : 22 ¥
max {_1’H’_E’§} < r, < min{5 2,174}
From which we conclude: 1 € [3,4].
In General:

« The original system has a solution over @) iff the system after
elimination of one variable has a solution over Q).

e« Every elimination step may square the number of
in-equations == exponential run-time.

s |t can be modified such that it also decides satisfiability over
Z == 0mega Test
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3 —iz < 11-22  (L,5) ~5 < —xp
%—%1‘2 < %-‘r%l’g (16) —1 < xo
4 -2z < 11— 21y (2,5) 7 <0
j02 < 11—2z,  (3,5) or —2Z < g
jra < ¥+ iz (3,6) —17 < -1y
6—63_."2 < 11—23_."2 (-15) —% < HiD)
6— 6z < A+ lua, (4,6) 3 < x
—4 § —XI2 (7) —4 § —Ia

This is the one-variable case which we can solve exactly:

71

<

William Worthington Pugh, Jr.
University of Maryland, College Park
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Idea W.L.o.g., we only consider strict in-equations:

¢ We successively remove variables. Thereby we omit division 6.2 < 18+ 21

8 Ty < 4|

o If r only occurs with coefficient  +1, we apply
Fourier-Motzkin elimination.

... where we always divide by gcds:

e Otherwise, we provide a bound for a positive multiple of = ... 3.0 < 9+
Consider, e.g., (1) and (6): 8—mxy < 4-u1y
This implies:
6-11 < 17+ 21,
99—z < 4.1y

3(8 Ig) < 4-(9+I2)
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