Script generated by TTT

Title: Seidl: Programmoptimierung (13.01.2016)
Date: Wed Jan 13 10:20:06 CET 2016
Duration: 90:50 min

Pages: 54

VLIW

One instruction simultaneously executesupto % (e.g., 4:)
elementary Instructions.

Pipelining

Instruction execution may overlap.

Example

w=(Ri= Re @\ D =Dy+ Dy MI[R4))

649

3.2 Instruction Level Parallelism

Modern processors do not execute one instruction after the other
strictly sequentially.

Here, we consider two approaches:

(1) VLIW (Very Large Instruction Words)
(2) Pipelining

648

Caveat

e Instructions occupy hardware ressources.

e Instructions may access the same busses/registers ——
hazards

e Results of an instruction may be available only after some
delay.

e During execution, different parts of the hardware are involved:

Fetch = Decode (— Execute Write

e During Execute and Write different internal
registers/busses/alus may be used.

650

VLIW

One instruction simultaneously executesupto & (e.g., 4:)
elementary Instructions.

Pipelining

Instruction execution may overlap.

Example

w= (R =R @ D = D+ Dg@: M{[Ry])

649

We conclude:

Distributing the instruction sequence into sequences of words is
amenable to various constraints ...

In the following, we ignore the phases Fetch und Decode.

Examples for Constraints
(1) at most one load/store per word;

(2) at most one jump;
(3) at most one write into the same register.

651

Caveat

e Instructions occupy hardware ressources.

e Instructions may access the same busses/registers —
hazards

e« Results of an instruction may be available only after some
delay.

e During execution, different parts of the hardware are involved:

Fetch = Decode [—=| Execute Write

e During Execute and Write different internal
registers/busses/alus may be used.

650

Caveat

e Instructions occupy hardware ressources.

e Instructions may access the same busses/registers ——
hazards

e Results of an instruction may be available only after some
delay.

e During execution, different parts of the hardware are involved:

Fetch = Decode (— Execute Write

e During Execute and Write different internal
registers/busses/alus may be used.

650

We conclude:

Distributing the instruction sequence into sequences of words is
amenable to various constraints ...

In the following, we ignore the phases Fetch und Decode.

Examples for Constraints
(1) at most one load/store per word;

(2) at most one jump;
(3) at most one write into the same register.

651

We conclude:

Distributing the instruction sequence into sequences of words is
amenable to various constraints ...

In the following, we ignore the phases Fetch und Decode.

Examples for Constraints
(1) at most one load/store per word;

(2) at most one jump;
(3) at most one write into the same register.

651

Caveat

e Instructions occupy hardware ressources.

e Instructions may access the same busses/registers —
hazards

e« Results of an instruction may be available only after some
delay.

e During execution, different parts of the hardware are involved:

Fetch = Decode [—=| Execute Write

e During Execute and Write different internal
registers/busses/alus may be used.

650

Example Timing:

Floating-point Operation
Load/Store
Integer Arithmetic 1

Timing Diagram:
R, R, R
5 | %

L
1

s D
7. 03

o

49

LS R e

174

R3 is over-written, after the addition has fetched 2.

652

VLIW

One instruction simultaneously executesupto & (e.g., 4:)
elementary Instructions.
Pipelining

Instruction execution may overlap.

R

i(Rl RQ+R‘3‘D Dl*D2|Rz—1”R1)

1 3 /B

649

If a register is accessed simultaneously (here: Rj), a strategy of
conflict solving is required ...

Conflicts
Read-Read: A register is simultaneously read.
= in general, unproblematic.

Read-Write: A register is simultaneously read and written.
Conflict Resolution:
e .. ruledout!
o Read is delayed (stalls), until write has terminated!

o Read before write returns old value!

653

Example Timing:

Floating-point Operation
Load/Store
Integer Arithmetic 1

Timing Diagram:

R3 is over-written, after the addition has fetched 2.

652

Write-Write: A register is simultaneously written to.
—— in general, unproblematic.
Conflict Resolutions:

e ... ruled out!

In Our Examples ...

e simultaneous read is permitted;
e simultaneous write/read and write/write is ruled out;
e no stalls are injected.

We first consider basic blocks only, i.e., linear sequences of
assignments ...

654

If a register is accessed simultaneously (here: Rs), a strategy of
conflict solving is required ...

Conflicts

Read-Read: A register is simultaneously read.
—— in general, unproblematic.

Read-Write: A register is simultaneousl d and written.
Conflict Resolution:

. ... ruled out!
e Readis delayed (stalls), until write rminated!
¢ Read before write returns old value!

653

Idea: Data Dependence Graph

Vertices | Instructions

Edges Dependencies

Example
(1) z=z+1,
(2) y=MI[A];
(3) t=z
(4) z=M[A+z];
(5) t=y+z

655

Write-Write: A register is simultaneously written to.
—— in general, unproblematic.
Conflict Resolutions:

e .. ruledout!

In Our Examples ...

e simultaneous read is permitted;
e simultaneous write/read and write/write is ruled out;
e no stalls are injected.

We first consider basic blocks only, i.e., linear sequences of
assignments ...

654

Possible Dependencies

Definition — Use // Reaching Definitions

—Use————Definiion—4 277

Definition —» Definition // Reaching Definitions

Reaching Definitions:

Determine for each « which definitions may reach —— can
be determined by means of a system of constraints.

... in the Example:

656

B R |
L {{e, 1), (w1, (2,1, (6 1}
2| {{&,2), (1), (= 1), (1, 1)}
3] {{2,2), (w,3), (=, 1), (. 1)}
4 {(,2), (0, 3), (=, 1, (14}
5| {{,2),(y:3), (2,5), (t,4}}
6] {{x,2),(,3), (z,5), {t,6)}

The UD-edge (3,4) has been inserted to exclude that 2 is
over-written before use.

In the next step, each instruction is annotated with its (required
ressources, in particular, its) execution time.

Our goal is a maximally parallel correct sequence of words.

For that, we maintain the current system state:
¥ Vars =+ N
Y(x) = expected delay until = is available
Initially:
(x) =0

As an invariant, we guarantee on entry of the basic block, that all
operations are terminated.

659

Let U;, D; denotethe sets of variables which are used or

defined at the edge outgoing from «; . Then:

(Hl, Hz) e DD
(-u.l, i‘rz) e DU

... in the Example:

‘ ‘ ‘ Def| Use |
lle=x+1; {z} | {=}
2| y=MI[A]; {v} | {4}
3| h== {t} | {=}
1 2x M[A+z]; | {2} | {A,z}
Sltgy+s {t} | {y, 2}

Let U, D; denote the sets of variables which are used or

if
if

U € R[h‘z} A D1 n D2 # U’]
U € R[L‘.Q} ANDinUs # 1]

658

defined at the edge outgoing from w; . Then:

('H.l, NQ) S DD
(ul, ”2) e DU

... in the Example:

‘ ‘ ‘ Def| Use |
llz=x+1; {z} | {=}
2| y=MIAJ; {u} | {4}
3|t==z {t} | {=}
4| z=M[A+z]; | {2} | {A =z}
5lt=y+z {t} | {2}

if
if

U € R[‘B.‘.Q} A D1 n D2 # m
up € R[Hﬂ ANDyNU; # 0

DD DD /DD DD

‘I|‘1‘:‘1‘+l:| ‘3‘};:JHA]:| |_/‘t:z:‘

DU

658

The UD-edge (3,4) has been inserted to exclude that = is
over-written before use.

In the next step, each instruction is annotated with its (required
ressources, in particular, its) execution time.

Our goal is a maximally parallel correct sequence of words.
For that, we maintain the current system state:

¥ Vars - N
Y(x) = expected delay until = is available
Initially:
B@) =0 (—

As an invariant, we guarantee on entry of the basic block, that all
operations are terminated.

659

Example: Word width k=2
Word State

1 ‘ 2 .r‘g[z"‘

00 0

r=x+1|y=M[A 0/1/0]0

t=z z=MA+z]||0|0]|1]0

010010

t=y+z 0olo/olo

In each cycle, the execution of a new word is triggered.

The state just records the number of cycles still to be waited for the
result.

661

Then the slots of the word sequence are successively filled:

e We start with the minimal nodes in the dependence graph.
o Ifwe fail to fill all slots of a word, we insert
o After every inserted instruction, we re-compute % .

Caveat

+ The execution of two VLIWSs can overlap !!!
> Determining an optimal sequence, is NP-hard ...

660

Example: Word width £ =2
Word State

1 ‘ 2 :7“;1;’2‘#

010(0]0

r=xz+1|y=M[A] 0|11]/0/0

t==z z=M[A+z]||0|0|1|0

010(0]0

t=y+z olojo]o

In each cycle, the execution of a new word is triggered.

The state just records the number of cycles still to be waited for the
result.

661

Example: Word width & = 2
Word State

1 ‘ 2 T ‘ ylz|t

0jojo}o

r=xz+1|y=M[A 0]1]/0]0

t=z =M[A+=z]||0]0|1]0

0|{0j0]|0O

t=y+z 0jojo}o

In each cycle, the execution of a new word is triggered.

The state just records the number of cycles still to be waited for the

result.

661

Extension 1: Acyclic Code

if (z>1) {
y = M[A);
z=x—1;

}oelse {
y=M[A+1];
z=x—1;

}

y=y+1;

The dependence graph must be enriched with extra
control-dependencies ...

663

Remark

e Ifinstructions put constraints on future selection, we also
record thesein 2.

e Overall, we still distinuish just finitely many system states.

e« The computation of the effect of a VLIW onto ¥ can be
compiled into a finite automaton !!!

e This automaton, though, could be guite huge.
¢ The challenge of making choices still remains.
e Basic blocks usually are not very large

= opportunities for parallelization are limited.

662

Extension 1: Acyclic Code

if (x>1) {
y = M[A];
z=x—1;

} else {
y = M[A+1];
z=x—1;

1

y=y+1

The dependence graph must be enriched with extra
control-dependencies ...

663

The statement > =2z —1; is executed with the same arguments
in both branches and does not modify any of the remaining
variables.

We could have moved it before the if anyway.

664

If we allow several (known) states on entry of a sub-block, we can
generate code which complies with all of these.

... in the Example:

z=z—1 if (/(z>0)) goto A
y = M[A] goto B

A ly=M[A+1]

B:
y=y+1

666

The following code could be generated:

z=x—1 if ({(z>0)) goto A

=MD | =

(goto T N1

A:ly=M[A+1]

B:ly=y+1

At every jump target, we guarantee the invariant.

665

If this parallelism is not yet sufficient, we could try to speculatively
execute possibly useful tasks ...

For that, we require:

e anidea which alternative is executed more frequently;

e the wrong execution may not end in a catastrophy, i.e.,
run-time errors such as, e.g., division by 0;

e« the wrong execution must allow roll-back (e.g., by delaying a
commit) or may not have any observational effects ...

667

... in the Example:

z=z—1 y= M[A] |if (z>0) goto B
y=M[A+1]

B:
y=y+1

Inthecase z <0 wehave y= M[A] executedinadvance.

This value, however, is overwritten in the next step ...

In general:

z =e; hasno observable effectin a branchif = is dead in this
branch.

668

Extension 2: Unrolling of Loops

We may unrole importajt, if , inner Lops several times:

669

If this parallelism is not yet sufficient, we could try to speculatively
execute possibly useful tasks ...

For that, we require:

« anidea which alternative is executed more frequently;

e the wrong execution may not end in a catastrophy, i.e.,
run-time errors such as, e.g., division by 0;

e the wrong execution must allow roll-back (e.g., by delaying a
commit) or may not have any observational effects ...

667

If this parallelism is not yet sufficient, we could try to speculatively
execute possibly useful tasks ...

For that, we require:

e anidea which alternative is executed more frequently;

e the wrong execution may not end in a catastrophy, i.e.,
run-time errors such as, e.g., division by 0;

e« the wrong execution must allow roll-back (e.g., by delaying a
commit) or may not have any observational effects ...

667

Extension 2: Unrolling of Loops Extension 2: Unrolling of Loops

We may unrole important, i.e., inner loops several times:

669 669
Now it is clear which side of tests to prefer: Now it is clear which side of tests to prefer:
the side which stays within the unroled body of the loop. the side which stays within the unroled body of the loop.
Caveat Caveat
e The different instances of the body are translated relative to « The different instances of the body are translated relative to
possibly different initial states. possibly different initial states.
¢ The code behind the loap must be correct relative to the exit e The code behind the loop mus{ be correct relative to the exit
state corresponding to every jump out of the loop! state corresponding to ev&fy iump out of the loop!

670 670

Example

for (x =0;2 < n;z++)
M[A+ 2] =z

Duplication of the body yields:

x =0

671

for (=02 <nz++) {

MA+ 2] =z
r=x+1;

if (!(z <n)) break;
M[A+ 2] ==z

}

AN
C?;\H,—'l + 1] = z;

z=x+1;

@7

672

It would be betterto remove = = x +1; together with the testin
the middle — since these serialize execution of the copies !!

Thisis possible if 2 +1 is substituted for = in the second copy,
the condition is transformed and compensation code is added:

for (z=0x4+1<nz=a+2) {
M[A+z] =2z
MA+z+1 =2z
} Neg (<)
if (x<n) {
M[A+z] =z
r=x+1;

}

W™/

673

It would be betterto remove = ==z + 1; together with the testin
the middle — since these serialize execution of the copies !!

This is possible if = + 1 is substituted for = in the second copy,
the condition is transformed and compensation code is added:

for (z=0z+1l<nz=x+2) {
M[A+z] =z
MA+z+1] =2z
1

if (x<n){
M[A+z] =2z
r=x+1;

}

M[A+ 2] = 2

MA+z+1] =z

673

for (zx=0;z <nyz++) {
M[A+ 2] ==z
r=x+1;
if (!(z <n)) break;
M[A+z] =z

M[A+ 7] = z;
T =x+1;

Pos (z < n)

} ?’UH 41 =z
?‘e‘ =z+1;
O>—
672
z =0
Neg (z < n) Pos (z < n)
for (=02 <nz++) {
M[A+ 2] =z M[A+a] =z
ﬂf:$+1 r=x+1;
if (!(x<n)) break; 1
Pos (z < n)
} C?;THA + 1] = z;
z=x+1;
O—ro

672

It would be betterto remove = = x +1; together with the testin
the middle — since these serialize execution of the copies !!

Thisis possible if 2 +1 is substituted for = in the second copy,
the condition is transformed and compensation code is added:

for (z=0z+1<nz=2+2) {
M[A+z] =2z
M[A+z+1] =z
} Neg (& < n
if (x<mn){
M[A+z] =z
r=x+1;

}

M[A+z] =2

M[A+z+1] = 2

673

It would be betterto remove = ==z + 1; together with the testin
the middle — since these serialize execution of the copies !!

This is possible if = + 1 is substituted for = in the second copy,
the condition is transformed and compensation code is added:

for (z=0ix+1<nzr=x+2) {
M[A+z] =z
MA+z+1] =2z
1 Neg (z < n)
if (x<n){
M[A+ z] = z;
r=x+1;

}

M[A+ 2] = 2

MA 4z +1] = 2

673

Discussion

« Elimination of the intermediate test together with the the
fusion of all increments at the end reveals that the different
loop iterations are in fact independent.

¢ Nonetheless, we do not gain much since we only allow one
store per word.

e |Ifright-hand sides, however, are more complex, we can
interleave their evaluation with the stores.

674

Extension 3

Sometimes, one loop alone does not provide enough opportunities
for parallelization.

... but perhaps two successively in a row ...

Example
for (z =0;z <njz++) { for (zx =0;2 <nyz++) {
R = Bla); R= Bl
S =Clx]; S=Clz];
T, = R+ S; T,=R—S:
Alz] =Ty Clz] =Ty

} }

675

Extension 3

Sometimes, one loop alone does not provide enough opportunities

for parallelization.

... but perhaps two successively in a row ...

Example

for (x=0;2 <n;z++) {

@ Blal;

(S)= Clal;

Ih=R+S5;
A[I}iTl;
1

675

for (x =0;2z <njz++) {

= Bz];
Clzl;

T, =R-S;
Clz] = Ty;

t

