Script generated by TTT
3.1 Registers
. . . Example
Title: Seidl: Programmoptimierung (23.12.2015)
r = M[A];
Date: Wed Dec 23 10:21:07 CET 2015 y=x+1
if (1) {
Duration: 89:13 min z=a-z
MIA] = z
Pages: 52 boelse {
t=-y-y
M[A] =
}
582
The program uses 5 variables ...
Problem 3.1 Registers
What if the program uses more variables than there are registers. Example
r = M[A];
Idea y=x+1
)) if () {
Use one register for several variables. I
In the example, e.g., one for =z, ¢, = ... M[A] = =
} else {
t=—y-u;
MIA] =t;
}
583 582

The program uses 5 variables ...

Problem

What if the program uses more variables than there are registers.

Idea

Use one register for several variables.

In the example, e.g., one for =, ¢, = ...

583

7 {4, 2}

6| {A4,xz}

5| {A4,t}

41 {A, v}

31 {A, z,y}
2| {4, xz}
1({A4}

587

R = M[A];

y=h+1 R = M[A];

if (y) {
R=R-R; v=R+1Y;
MI[A] = R; Neg (y) Pos (y)

1 else {
R=—y-y R=—y- y R=R
MIA] = R;

) MI[A] = R; M[A] = B;

585

x = M[A]; 71 {A 2}

6| {A,x}

51 {A,t}

41 {4y}
R 3 {A, z,y}
2| {A, z}
1({A}

y=uzx+1;;

Neg (y) Pos (y)

587

Live Ranges:
Al{0,...,7}
x| {2,3,6}
y | {2,4}
t | {5}
z [{7}
589

Interference Graph:

(t) (z)

591

In order to determine sets of compatible variables, we construct the
Interference Graph I = (Vars, E;) where:

Er={e,y} |« # y, Llz] 0 L]y # 0}

Er hasanedgeforz+#y iff =,y arejointlylive at some
program point.

... In the Example:

590

Variables which are not connected with an edge can be assigned
to the same register.

592

Variables which are not connected with an edge can be assigned
to the same register.

Color = Register

593

Sviatoslav Sergeevich Lavrov,
Russian Academy of Sciences (1962)

594

Sviatoslav Sergeevich Lavrov,
Russian Academy of Sciences (1962)

594

Gregory J. Chaitin, University of Maine (1981)

595

Abstract Problem
Given: Undirected Graph (V. E) .
Wanted: Minimal coloring, i.e., mapping ¢: V — N mit

(1) e(u) #c(v) for {u.v} € E;
(2 | He(w) |we VY minimall

¢ Inthe example, 3 colors suffice. But:
e In general, the minimal coloring is not unique.

e Itis NP-complete to determine whether there is a colaring
with at most %k colors.

—
—_—

We must rely on heuristics or special cases.

596

Abstract Problem
Given: Undirected Graph (V, E) .
Wanted: Minimal coloring, i.e., mapping ¢: V' — N mit

(1) clu) #clv) for {u,v}e€E;
(2) | He(w) |weV} minimall

e Inthe example, 3 colors suffice. But:
¢ In general, the minimal coloring is not unique.

e |tis NP-complete to determine whether there is a coloring
with at most k& colors.

We must rely on heuristics or special cases.

596

Live Ranges:

Al{o,...,7}
r | {2,3,6)
y [{2,4}

t | {5}

z | {7}

589

Greedy Heuristics

Start somewhere with color 1;

Next choose the smallest color which is different from the
colors of all already colored neighbors;

If a node is colored, color all neighbors which not yet have
colors;

Deal with one component after the other ...

597

... more concretely:

forall (v e V) cfv] =0;
forall (v e V) color (v);
void color (v) {
if (c[v] #0) return;
neighbors = {u € V | {u,v} € E};
clv] =k > 0| Vu € neighbors : k # c(u)};
forall (u € neighbors)
if (c(u) ==0) color (u);
}

The new color can be easily determined once the neighbors are
sorted according to their colors.

598

Discussion

> Essentially, this is a Pre-order DFS.

> In theory, the result may arbitrarily far from the optimum
» ... inpractice, it may not be as bad.

» ... Anecdote: different variants have been patented !!!

The algorithm works the better the smaller life ranges are ...

Idea: Life Range Splitting

600

Discussion

» Essentially, this is a Pre-order DFS.
> Intheory, the result may arbitrarily far from the optimum

» ... in practice, it may not be as bad.
» ... Anecdote: different variants have been patented !!!
599
Special Case: Basic Blocks
L
T,Y,z
Ay=x+y; x,2

MA=G) |«
=1 + 1; T
MI[A]; T,z

t= ﬁ/fw; T

Ay = lh-‘r t; N
M[As] =z 4 |zt
y=M [2/1 y, i

My =t

601

Special Case: Basic Blocks The liverangesof = and =z canbe split:

L
A=z 4y T,z Av=x+y; T, % .
MA) =% |z) M[Ay] = 2 z Y
z=x+1; x “ =z +1 T -
z = M[4); T,z () (v) 2 = M[A]; T, 2
t = Mz]; T, 2,1 " t = Mzi]; T, Z1,l
Ay =z +t; oot o Ag =z + ¢t Ty, 21, b
M[Ay] = z M[Ag] = z4; a1
y = Mlzx]; y1 = Mlz]; Y1, t
Myl =t M) =t
602 603

Interference graphs for minimal live ranges on basic blocks are

The liveranges of = and =z can be split:
known as interval graphs:

L
Ly, %
_ - A=+ T,z
- — M[A] = =z, T
T r=x+1; 1
—_— 2 = M[A,)]; T, 2
t = Mz, Tq, 21,1t
vertex —— interval Ay =1 +1; Ty, 21,
edge = joint vertex M[A;] = 2; Tq,1
y1 = Mlz]; Y1, 1
My,] =t;

605 604

Interference graphs for minimal live ranges on basic blocks are
known as interval graphs:

vertex —— interval

edge —=—— joint vertex

605

The covering number of a vertex is given by the number of incident

intervals.

]

maximal covering number

—= size of the maximal clique

== minimally necessary number of colors

Graphs with this property (for every sub-graph) are called perfect ...

A minimal coloring can be found in polynomial time.

606

Interference graphs for minimal live ranges on basic blocks are
known as interval graphs:

vertex —— interval
edge

joint vertex

605

Interference graphs for minimal live ranges on basic blocks are
known as interval graphs:

@'r‘@’\ﬂ:t:::
SeveT eyt

vertex —— interval

edge joint vertex

605

The covering number of a vertex is given by the number of incident
intervals.

Theorem

maximal covering number
size of the maximal clique

minimally necessary number of colors

Graphs with this property (for every sub-graph) are called perfect ...

A minimal coloring can be found in polynomial time.

606

Idea

> Conceptually iterate over the vertices 0,...,m — 1!
> Maintain a list of currently free colors.
> If an interval starts, allocate the next free color.

> If an interval ends, free its color.

This results in the following algorithm:

607

Interference graphs for minimal live ranges on basic blocks are
known as interval graphs:

[E————

S T

vertex —— interval
edge =—— joint vertex
605
free =[1,..., k]

for (i =0;i < m;it++) {

init[i] = []; exitfi] = [J;
1
forall (I = [u,v] € Intervals) {

init[u] = (I :init[u]); exitfv] = (I::exit[v]);
1
for (i =0;i <m;it++) {

forall (I € init[z]) {

color[I] = hd free; free = tl free;

}

forall (I € exit[i]) free = color[]]:: free;

608

free = [1,..., k];

for (i =0;i <m;i++) {
init[7] = []; exit[i] = [|;

1

forall (I = [u,v] € Intervals) {

init[u] = (I ::init[u]); exit[v] = (I ::exit[v]);
}
for (1 =0;i < myi++) {
forall (I € initf]) {
color[I] = hd free; free = tl free;

}

forall (I € exit[i]) free = color[I]:: free;

608

Discussion

_

Every live variable should be defined at most once ?7?
Every live variable should have at most one definition ?

All definitions of the same variable should have a common
end point !!!

Static Single Assignment Form

610

Discussion

For arbitrary programs, we thus may apply some heuristics
for graph coloring ...

If the number of real register does not suffice, the remaining
variables are spilled into a fixed area on the stack.

Generally, variables from inner loops are preferably held in
registers.

For basic blocks we have succeeded to derive an optimal
register allocation.

The number of required registers could even be determined
before-hand !

This works only once live ranges have been split.

Splitting of live ranges for full programs results programs in
static single assignment form ...

609 \S> G»Q S Ly

Discussion

_

Every live variable should be defined at most once ??
Every live variable should have at most one definition ?

All definitions of the same variable should have a common
end point !!!

Static Single Assignment Form

610

How to arrive at SSA Form Implementing Step 1

We proceed in two phases: o Determine for every program point the set of reaching
definitions.
Step 1: e Assumption
Transform the program such that each program point v is All incoming edges of a join point v are labeled with the same
reached by at most one definition of a variable = which is parallel assignment = =z |z ¢ L, for some set L,.
live at w.

Initially, L, = @ for all ».

e Ifthe join point v is reached by more than one definition
for the same variable = which is live at program point v,
insert = into L,, i.e., add definitions = = x; atthe end of
each incoming edge of v.

Step 2:

e Introduce a separate variant z; for every occurrence of
a definition of a variable =z !

e Replace every use of z with the use of the reaching
variant xy, ...

611 612

Example Implementing Step 1

Reaching Definitions
¢ Determine for every program point the set of reaching

‘ H R ‘ definitions.

0 (z, 0}, {y, 0) ¢ Assumption

1 (x,1),{y,0) All incoming edges of a join point v are labeled with the same

2| (. 1), (z,5), (v, 2), (v, parallel assignment » —x |z € L, for some set L,.

3 (1), (@5, (1,2), (9,4) Initially, L, = 0 for all v.

4 {x, 1), {x,5), {y,4) e Ifthe join point v is reached by more than one definition

5 (x,5), {1y, 4) for the same variable = which is live at program point v,
7.,— o , insert = into L,, i.e., add definitions = = z; atthe end of

611 (oo e 5), (0,2, o, 4) each incoming edge of v.

7| {z,1), (z,5), (u,2), {y.4)

613 612

Example Example

Reaching Definitions Reaching Definitions
H R | L R |
0 {0}, (y,0) 0 {x,0), (y,0)
1 (r, 1}, (y,0) 1 (x,1), (y,0)
2| e 1 (50, (2D G 2| 1. (030, 020, 009) €) 3
3| (1), (#,5), (v,2), (,4) 3| (w, 1), {,8), (v, 2), (v, 4) /@D
4| (1), (x,5), (y,4) || (z,1),(x.,5), (1,4)
(z,5), (v, 4) (z,5), (5, 4)
6 (2,1}, {z,5), (y,2), (y,4) 6| (x,1),(z,5), {1, 2), (v, 4)
7 {1}, {z,5), (y,2), (v, 4) 7| {x,1), {z,5), (y,2), (v, 4)

Reaching Definitions The Transformation SSA, Step 1

The complete lattice R for this analysis is given by:

R = QD.':fs
where
Defs = Vi Nod Defs(x) = {z} x Nod
efs ars x Nodes efs(z) = {x} x Nodes where k > 2.
Then:
The label v of the new in-going edges for v is given by:
[,z =r;,0)]R = R\Defs(z)U {{z,v)}

[(,z=z|z€eLv)fR = R\, Defs(x) U{{z,v) | « € L} v = {r=u|ze L], #(R[v] N Defs(x)) > 1}

The orderingon R is given by subsetinclusion < where the

value at program startis given by R, = {(z, start) | z € Vars}.

If the node v is the start point of the program, we add auxiliary
edges whenever there are further ingoing edges into v:

The Transformation SSA, Step 1 (cont.)

O
b

k

where k> 1and ¢ ofthe new in-going edges for v is given
by:
Y = {x =z |xe L], #(R[v] N Defs(z)) > 1}
617
Discussion

e Program start is interpreted as (the end point of) a definition
of every variable .

¢ At some edges, parallel definitions 2 are introduced !
¢ Some of them may be useless.

618

Discussion

e Program start is interpreted as (the end point of) a definition
of every variable .

e Atsome edges, parallel definitions > are introduced !
e Some of them may be useless.

618

Discussion

¢ Program start is interpreted as (the end point of) a definition
of every variable .

e Atsome edges, parallel definitions 1) are introduced !
e Some of them may be useless.

Improvement

e We introduce assignments « =z before v only if the sets
of reaching definitions for = at incoming edges of v differ !

e This introduction is repeated until every v is reached by
exactly one definition for each variable live at v.

619

Theorem

Assume that every program point in the controlflow graph is
reachable from start and that every left-hand side of a definition
is live. Then:

1

. The algorithm for inserting definitions = = = terminates after

atmost n-(m+1) roundswere m isthe number of
program points with mare than one in-going edges and n s
the number of variables.

. After termination, for every program point u, the set R[u] has

exactly one definition for every variable » which is live at u.

620

