Script generated by TTT

Title: Seidl: Programmoptimierung (10.12.2015)
Date: Thu Dec 10 08:34:28 CET 2015
Duration: 90:47 min

Pages: 45

Costs

e 1 times evaluation of f;
e 1.(n—1)-n subtractions to determine the A¥;
e n additions for every further value.

Number of multiplications only depends on n.

481

Example: flzx) = 32% — 5z +4x + 13

n|fm)| A | ar|al
0 2\3\18
1 10

2 6

3

4

Here, the n-th difference is always

Ap(f)=n!-a,-h* (hstep width)

480

Simple Case: flx)=a1-z+q

e ... naturally occurs in many numerical loops.

e The first differences are already constant:
f@+h)—f@) =a-h

. Instead of the sequence: yi=f(zg+i-h), >0
we compute: vo=f(rg), A=ay-h
Yi=%a1+A, >0

482

... or, after loop rotation:

i = ip; Neg(i < n)
if (i <n) do {

A=Ap+b-4;

M[A =....

i=1t+h;

} while (i < n);

Neg(i < n) Pos(i < n)

484

Example

for (i =idg;i <myi=1i+h) {
A=Ay+b-1;
M[A] =...;

483

. or, after loop rotation:

1= 1p; Neg(i < n)
if (i <n) do {

A= Ay+b-4;

M[A=...;

t=1+h;

} while (i < n);

484
. or, after loop rotation:
i = 1g; Neg(i < n)
if (i <n) do {
A=Ay +b-1
M[A] =...;
i=1+h

} while (i < n);

484

.. or, after loop rotation:

i = ip; Neg(i < n)

if (1 <n) do {
A=Ag+b-4;
M[A]=...;
i=ith
} while (i < n);
Neg(i < n) Pos(i < n)

484

.. and reduction of strength:

1 =1p;
if (i< n) { bk
A=b-h Neg(i < n)
A=Ay +b-ig;
do { ©®
M[A]=..;
i=1i+h;
A=A+A

} while (i < n);

Neg(i < n) Pos(i < n)
gl) L)

485

Caveat

e Thevalues b,k A, mustnot change their values during
the loop.

e i,/ may be modified at exactly one position in the loop.

e One may try to eliminate the variable ¢ altogether :

» i may not be used else-where.

> The initialization must be transformed into:
A=Ag+b-ig.

> The loop condition i < n must be transformed into:
A<N for N=Ay+b-n.

» b must always be different from zero !!!

486

Caveat

e Thevalues b,h, Ay must not change their values during
the loop.

¢ i.A may be modified at exactly one position in the loop.
e One may try to eliminate the variable i altogether :

» i may not be used else-where.

> The initialization must be transformed into:
A= ;1(; b- '?I(, .

> The loop condition i < n must be transformed into:
A<N for N=Ay+b-n.

» b must always be different from zero !!!

486

.. and reduction of strength:

MIA] =

1=1+h;

A=A+A
} while (i < n);

485

.. and reduction of strength:

M[A] =

i=i+h

A=A+A
} while (i < n);

485

Neg(i < n)

A=A+ A;

Pos(i < n)

Caveat

ne values
the loop.

b, h, Ay must not change their values during

be modified at exactly one position in the lo

D

e One may try to eiiminaie e variavic ¢ arnogeiner :

» i may not be used else-where.

> The initialization must be transformed into:
A=Ag+b-ig.

> The loop condition i < n must be transformed into:
A< N for N=Ay+b-n.

» b must always be different from zero !!!

486

Caveat & (}/}\0‘{,6“«/

e Thevalues b,h, Ay must not change their values during
the loop.

¢ i.A may be modified at exactly one position in the loop.
e One may try to eliminate the variable i altogether :

» i may not be used else-where.

transformed into:

A<N for N=Ay+b-n.

> b mustalwaysb dlfferentf/imzeglll
¢ /s

486

Caveat Approach

e Thevalues b, h, A; mustnot change their values during Identify
the loop.
P loops;
e i,/ may be modified at exactly one position in the loop.

iteration variables;
e One may try to eliminate the variable ¢ altogether :

constants;

i may not be used else-where. ... the matching use structures.
» The initialization must be transformed into:

A=A+ b-iy.
> The loop condition i < n must be transformed into:

A< N for N = Ag+b-n.
» b must always be different from zero !!!

486 487
Loops: Example

... are identified through the node © with backedge (_, ,v).

© [7 |

{0}

Loop[t] = {w]|w —=*v in G} ! 1 {0,1}
@JQW 2| {0,1,2}

3

4

For the sub-graph G, ofthecfgon {w|v = w}, we define:

1
o

{0,1,2,3}

{0,1,2,3,4}

L 5| 4{0,1,5}

488 491

We are interested in edges which during each iteration are
executed exactly once:

This property can be expressed by means of the pre-dominator
relation ...

492

Assume that (u, . v) is the back edge.

Thenedges k= (ui,_,v1) could be selected such that:
e v pre-dominates u; ;
e 1y pre-dominates v;;
e v, predominates u.

and is not contained in an inner loop.

On the level of source programs, this is trivial:

do { s1...sp

1 while (e);

494

Assume that (u, _,v) is the back edge.

Then edges k= (ui,_,v:1) could be selected such that:

e v pre-dominates u, ;
e 1, pre-dominates vy;
e v; predominates u

and is not contained in an inner loop.

493

The desired assignments must be among the
preceeding jumps.

495

A\~

s; witho

\é

lteration Variable:

i is an iteration variable if the only definition of i inside the loop
occurs at an edge which separates the body and is of the form:

i =1+ h;
for some loop constant & .
A loop constant is simply a constant (e.g., 42), or slightly more

libaral, an expression which only depends on variables which are
not modified during the loop.

496

(3) Differences for Sets

Consider the fixpoint computation:
r =0

for (tI:F:E;tga:;t:Fz;)

=z Ut;

If F isdistributive, it could be replaced by:

z=10; !: Z,
for (A=Fux;A #VJ;)

r=xzUA;

The function F must only be computed for the smaller sets A
semi-naive iteration

497

lteration Variable:

t is an iteration variable if the only definition of i inside the loop
occurs at an edge which separates the body and is of the form:

i =1+ h;
for some loop constant k.
A loop constant is simply a constant (e.g., 42), or slightly more

libaral, an expression which only depends on variables which are
not modified during the loop.

496

Instead of the sequence: ® C F(#) € F?(B) C
we compute: Ay U Ay UL
where: Ay = F(F(O)\F()
= F(ANALU...UA)

Assume that the costsof Fux is 1

Then the costs may sum up to:

naive 1+2+...+n+n = In(n+3)

semi-naive 2n

where n is the cardinality of the result.

= A linear factor is saved.

498

with Ay =10

2.2 Peephole Optimization

Idea

e Slide a small window over the program.
e Optimize agressively inside the window, i.e.,

» Eliminate redundancies!

+ Replace expensive operations inside the window by
cheaper ones!

499

Examples

y=Mzljz=2+1; = y=Mz++];
// given that there is a specific post-increment instruction
z=y—a+a; - z=1;

// algebraic simplifications

x=0; = r=x b

r=2-m = T =T+ T

500

Examples

y=M[zljz=z+1; _— y = M[z++];
// given that there is a specific post-incrgment instruction
z=y—a+a; = z=1y;

// algebraic simplifications

r=0; = r=zdx;
r=2-x — =+
500
Important Subproblem: nop-Optimization

1 7
y lab ﬁ lab
O

> If (vy,;,v) isanedge, wv; has no further out-going
edge.

» Consequently, we can identify «»; and v
» The ordering of the identifications does not matter.

501

Implementation

e We construct a function next : Nodes — Nodes with:

next v if (u,;,v) edge
next u = .
u otherwise

Caveat: This definition is only recursive if there are ;-loops
7279

¢ We replace every edge:
(u, lab,v) — (u, lab, next v)

... Whenever lab # ;
e All ;-edges are removed.

502

Example

L\){lr:/l

nextl = 1
next3 = 4

nextd = 6

504

Example

nextl = 1
next 3 = 4
nextb = 6

503

2. Subproblem: Linearization

After optimization, the CFG must again be brought into a Iineal%
arrangement of instructions.

Caveat

Not every linearization is equally efficient !!!

505

Example Example

0: 0:
1: Aif (e1) goto 2; 11 if (le;) goto 4;
4: halt 2: Rumpf
2: Rumpf 3: if (le2) goto 1;
3: if (e2) goto 4; 4: halt
goto 1;
Bad: The loop body is jumped into. I better cache behavior
506 507
Idea More Complicated Example
e Assign to each node a temperature! ®

e always jumps to

(1) nodes which have already been handled:; ! (1)
0 .

(2) colder nodes. @
e Temperature = nesting-depth
€,
For the computation, we use the pre-dominator tree and strongly (4) g

connected components ...

508 511

More Complicated Example

512

Our definition of Loop implies that (detected) loops are
necessarily nested.

Is is also meaningful for do-while-loops with breaks ...

j ®

514

More Complicated Example

Loop[1]

Cime

@) E@
Loool]

513

Our definition of Loop implies that (detected) loops are
necessarily nested.

Is is also meaningful for do-while-loops with breaks ...

515

Summary:

The Approach

(1) Forevery node, determine a temperature;
(2) Pre-order-DFS over the CFG;

r

If an edge leads to a node we already have
generated code for, then we insert a jump.

If a node has two successors with different
temperature, then we insert a jump to the colder of
the two.

If both successors are equally warm, then it does not
matter.

516

2.3 Procedures

We extend our mini-programming language by procedures without
parameters and procedure calls.

For that, we introduce a new statement:

Every procedure f has a definition:
fF0O { stmt* J/

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main () .

517

