Script generated by TTT

Title: Seidl: Programmoptimierung (10.12.2015)

Date: Thu Dec 10 08:34:28 CET 2015

Duration: 90:47 min

45 Pages:

Costs

- n times evaluation of f;
- $\frac{1}{2} \cdot (n-1) \cdot n$ subtractions to determine the Δ^k ;
- n additions for every further value.

Number of multiplications only depends on n.

$$f(x) = 3x^3 - 5x^2 + 4x + 13$$

Here, the n-th difference is always

$$\Delta_h^n(f) = n! \cdot a_n \cdot h^n$$
 (h step width)

Simple Case:

$$f(x) = a_1 \cdot x + a_0$$

- ... naturally occurs in many numerical loops.
- The first differences are already constant:

$$f(x+h) - f(x) = a_1 \cdot h$$

Instead of the sequence: $y_i = f(x_0 + i \cdot h), i \ge 0$

$$y_i = f\left(x_0 + i \cdot h\right), \quad i \ge 0$$

we compute:

$$y_0 = f(x_0), \ \Delta = a_1 \cdot h$$

$$y_i = y_{i-1} + \Delta \,, \quad i > 0$$

... or, after loop rotation:

$$\begin{split} i &= i_0; \\ \text{if } (i < n) \text{ do } \{ \\ A &= A_0 + b \cdot i; \\ M[A] &= \dots; \\ i &= i + h; \\ \} \text{ while } (i < n); \end{split}$$

484

Example

for
$$(i=i_0;i< n;i=i+h)$$
 { $A=A_0+b\cdot i;$ $M[A]=\dots;$ } Neg $(i< n)$ Pos $(i< n)$ 2 $A=A_0+b\cdot i;$ 3 $M[A]=\dots;$ 4 $M[A]=\dots;$ 4 $M[A]=\dots;$ 5

... or, after loop rotation:

484

... or, after loop rotation:

483

... or, after loop rotation:

$$i=i_0;$$

$$i=i_0;$$

$$Neg(i< n)$$

$$A=A_0+b\cdot i;$$

$$M[A]=\dots;$$

$$i=i+h;$$

$$\} \text{ while } (i< n);$$

$$M[A]=\dots;$$

$$i=i+h;$$

$$M[A]=\dots;$$

$$M[A]=\dots;$$

484

... and reduction of strength:

$$i = i_{0};$$

$$if (i < n) \{$$

$$\Delta = b \cdot h;$$

$$A = A_{0} + b \cdot i_{0};$$

$$do \{$$

$$M[A] = \dots;$$

$$i = i + h;$$

$$A = A + \Delta;$$

$$\} \text{ while } (i < n);$$

$$\begin{cases}
M[A] = \dots; \\
A = A + \Delta; \\
A = A + \Delta;
\\
A = A + \Delta;
\end{cases}$$

$$\begin{cases}
M[A] = \dots; \\
A = A + \Delta; \\
A = A + \Delta;
\end{cases}$$

Caveat

- The values b, h, A_0 must not change their values during the loop.
- i, A may be modified at exactly one position in the loop.
- One may try to eliminate the variable i altogether:
 - → i may not be used else-where.

 - → b must always be different from zero !!!

486

Caveat

- The values b, h, A_0 must not change their values during the loop.
- i, A may be modified at exactly one position in the loop.
- One may try to eliminate the variable i altogether:
 - ightarrow i may not be used else-where.
 - \rightarrow The initialization must be transformed into: $A = A_0 + b \cdot i_0 \; .$

 - → b must always be different from zero !!!

... and reduction of strength:

$$\begin{array}{l} i=i_{0};\\ \text{if } (i$$

485

... and reduction of strength:

$$\begin{array}{c} i=i_0;\\ if \ (i< n) \ \{\\ \Delta=b\cdot h;\\ A=A_0+b\cdot i_0;\\ do \ \{\\ M[A]=\ldots;\\ i=i+h;\\ A=A+\Delta;\\ \} \ \text{ while } (i< n);\\ \end{array}$$

Caveat

- The values b, h, A_0 must not change their values during the loop.
- may be modified at exactly one position in the loop.
- One may try to eliminate the variable altogether:
 - → i may not be used else-where.
 - ightarrow The initialization must be transformed into: $A=A_0+b\cdot i_0$.
 - ightarrow The loop condition i < n must be transformed into: A < N for $N = A_0 + b \cdot n$.
 - → b must always be different from zero !!!

486

Caveat

A < Ao+60W

- The values b, h, A_0 must not change their values during the loop.
- i, A may be modified at exactly one position in the loop.
- One may try to eliminate the variable i altogether:
 - ightarrow i may not be used else-where.
 - → The initialization must be transformed into:
 - $A = A_0 + b \cdot i_0$. The loop condition i < n must be tra

 - \rightarrow b must always be different from zero !!! \leftarrow

Caveat

- The values b, h, A_0 must not change their values during the loop.
- i, A may be modified at exactly one position in the loop.
- One may try to eliminate the variable i altogether:
 - \rightarrow i may not be used else-where.
 - ightarrow The initialization must be transformed into: $A=A_0+b\cdot i_0$.

 - → b must always be different from zero !!!

486

Loops:

... are identified through the node v with back edge $(_,_,v)$.

For the sub-graph G_v of the cfg on $\{w \mid v \Rightarrow w\}$, we define:

$$\mathsf{Loop}[v] = \{ w \mid w \to^* v \text{ in } G_v \}$$

Approach

Identify

... loops;

... iteration variables;

... constants;

... the matching use structures.

487

Example

	\mathcal{P}	
0	{ <mark>0</mark> }	
1	$\{0, 1\}$	
2	$\{0, 1, 2\}$	
3	$\{0, 1, 2, 3\}$	
4	$\{0,1,2,3,4\}$	
5	$\{0, 1, 5\}$	

We are interested in edges which during each iteration are executed exactly once:

This property can be expressed by means of the pre-dominator relation ...

492

Assume that $(u, _, v)$ is the back edge.

Then edges $k = (u_1, _, v_1)$ could be selected such that:

- v pre-dominates u_1 ;
- u_1 pre-dominates v_1 ;
- v_1 predominates u.

and is not contained in an inner loop.

On the level of source programs, this is trivial:

do {
$$s_1 \dots s_k$$
 } while (e) ;

Assume that $(u, _, v)$ is the back edge.

Then edges $k = (u_1, _, v_1)$ could be selected such that:

- v pre-dominates u_1 ;
- u_1 pre-dominates v_1 ;
- v_1 predominates u

and is not contained in an inner loop.

493

The desired assignments must be among the preceeding jumps.

 s_i witho

Iteration Variable:

i is an iteration variable if the only definition of *i* inside the loop occurs at an edge which separates the body and is of the form:

$$i = i + h$$
;

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more libaral, an expression which only depends on variables which are not modified during the loop.

496

(3) Differences for Sets

Consider the fixpoint computation:

$$x = \emptyset;$$

for $(t = Fx; t \not\subseteq x; t = Fx;)$
 $x = x \cup t;$

If F is distributive, it could be replaced by:

$$x = \emptyset;$$
 for $(\Delta = Fx; \Delta \neq \emptyset; \Delta = (F\Delta) \setminus x;)$ $x = x \cup \Delta;$

The function $\ F$ must only be computed for the smaller sets $\ \Delta$ semi-naive iteration

Iteration Variable:

i is an iteration variable if the only definition of *i* inside the loop occurs at an edge which separates the body and is of the form:

$$i = i + h$$
;

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more libaral, an expression which only depends on variables which are not modified during the loop.

496

Instead of the sequence: $\emptyset \subseteq F(\emptyset) \subseteq F^2(\emptyset) \subseteq ...$

we compute: $\Delta_1 \cup \Delta_2 \cup \dots$

where: $\Delta_{i+1} \ = \ F\left(F^i(\emptyset)\right) \backslash F^i(\emptyset)$

 $= F(\Delta_i) \setminus (\Delta_1 \cup \ldots \cup \Delta_i) \text{ with } \Delta_0 = \emptyset$

Assume that the costs of Fx is 1 + #x

Then the costs may sum up to:

naive	$1+2+\ldots+n+n$	=	$\frac{1}{2}n(n+3)$
semi-naive			2n

where n is the cardinality of the result.

A linear factor is saved.

2.2 Peephole Optimization

Idea

- Slide a small window over the program.
- Optimize agressively inside the window, i.e.,
 - → Eliminate redundancies!
 - → Replace expensive operations inside the window by cheaper ones!

499

Examples

$$\begin{array}{lll} y=M[x]; x=x+1; & \Longrightarrow & y=M[x++]; \\ & /\!/ & \text{given that there is a specific post-increment instruction} \\ z=y-a+a; & \Longrightarrow & z=y; \\ & /\!/ & \text{algebraic simplifications} \\ x=x; & \Longrightarrow & ; \\ x=0; & \Longrightarrow & x=x\oplus x; \\ x=2\cdot x; & \Longrightarrow & x=x+x; \end{array}$$

Examples

$$y=M[x]; x=x+1;$$
 \Longrightarrow $y=M[x++];$

// given that there is a specific post-increment instruction $z=y-a+a;$ \Longrightarrow $z=y;$

// algebraic simplifications $x=x;$ \Longrightarrow ; $x=0;$ \Longrightarrow $x=x\oplus x;$ $x=2\cdot x;$ \Longrightarrow $x=x+x;$

500

Important Subproblem: nop-Optimization

- ightarrow If $(v_1, ;, v)$ is an edge, v_1 has no further out-going edge.
- ightarrow Consequently, we can identify $extit{v}_1$ and $extit{v}$.

Implementation

We construct a function next : Nodes → Nodes with:

$$\text{next } u = \left\{ \begin{array}{ll} \text{next } v & \text{if } (u,;,v) & \text{edge} \\ \\ u & \text{otherwise} \end{array} \right.$$

Caveat: This definition is only recursive if there are ;-loops ???

We replace every edge:

$$(u, lab, v) \implies (u, lab, next v)$$
... whenever $lab \neq ;$

All ;-edges are removed.

502

Example

 $\begin{array}{rcl} \operatorname{next} 1 & = & 1 \\ \operatorname{next} 3 & = & 4 \\ \operatorname{next} 5 & = & 6 \end{array}$

Example

 $\text{next } 1 = 1 \\
 \text{next } 3 = 4 \\
 \text{next } 5 = 6$

503

2. Subproblem: Linearization

After optimization, the CFG must again be brought into a linear arrangement of instructions.

Caveat

Not every linearization is equally efficient !!!

Example

Bad: The loop body is jumped into.

506

Idea

- Assign to each node a temperature!
- always jumps to
 - (1) nodes which have already been handled;
 - (2) colder nodes.
- Temperature ≈ nesting-depth

For the computation, we use the pre-dominator tree and strongly connected components \dots

Example

// better cache behavior

507

More Complicated Example

More Complicated Example

512

Our definition of Loop implies that (detected) loops are necessarily nested.

Is is also meaningful for do-while-loops with breaks ...

More Complicated Example

513

Our definition of Loop implies that (detected) loops are necessarily nested.

Is is also meaningful for do-while-loops with breaks ...

Summary: The Approach

- (1) For every node, determine a temperature;
- (2) Pre-order-DFS over the CFG;
 - → If an edge leads to a node we already have generated code for, then we insert a jump.
 - If a node has two successors with different temperature, then we insert a jump to the colder of the two.
 - → If both successors are equally warm, then it does not matter.

2.3 Procedures

We extend our mini-programming language by procedures without parameters and procedure calls.

For that, we introduce a new statement:

f();

Every procedure f has a definition:

 $f() \{ stmt^* \}$

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main ().

516

517