Script generated by TTT

Title: Seidl: Programmoptimierung (25.11.2015)
Date: Wed Nov 25 10:19:06 CET 2015
Duration: 90:59 min

Pages: 31

1.6 Pointer Analysis

Questions
» Are two addresses possibly equal? May Alias
> Are two addresses definitively equal? Must Alias

== Alias Analysis

356

1.6 Pointer Analysis

Questions

> Are two addresses possibly equal?
> Are two addresses definitively equal?

355

The analyses so far without alias information

(1) Available Expressions:

o Extendtheset Expr of expressions by occurring loads

Mle] .

o Extend the Effects of Edges:

[z =e]FA =
[r = Mle] :]i A =
[Mled = e A =

357

(AU {e})\Ezpr,
(Au{e, M[e]})\ Expr,
(AU {e1,e2})\ Loads

(2) Values of Variables:

Extend the set Expr of expressions by occurring loads
Mle] .

Extend the Effects of Edges:
{x} it ¢ = Mle|
[=Ml[e]]*Ve = 0 if ¢=e
Ve'\{z} otherwise
{ 0 it ¢ € {en e

[M[e1] = (ig:]u Ve)
Ve otherwise

358

(3) Constant Propagation:

Extend the abstract state by an abstract store M

¢ Execute accesses to known memory locations!

| (Do {x HBQ}, M) if
[x = Me];]* (D, M) [e]!D=acT
(D@ {rw— T}, M) otherwise
(D, M @ {a s [eo]'D}) if

[Mlei] = ex;]H (D, M) =
(D, T) otherwise
Ta = T (a eN)

359

H(,l]]uDi a” T

where

The analyses so far without alias information
(1) Available Expressions:

e Extendthe set Expr of expressions by occurring loads
Mle] .

¢ Extendthe Eﬁgdts of Edges:

[z =e]*A = (AU {e})\Empr,
[« = Me;!A = (AU {e, M[e]})\Expr,
H‘” [(41] = ('.21]]“ A (A U {(21, (',2})\1_,()(;(,?'3

357

Problems

{1 S} [V’Cfg
« Addresses are from N.C A ’\-’) V'(\

There are no infinite strictly ascending chains, but ...
e Exact addresses at compile-time are rarely known.

e Atthe same program point, typically different addresses are
accessed ...

e Storing at an unknown address destroys all information M.

—— constant propagation fails

==> memory accesses/pointers kill precision

360

Problems

e Addresses are from N.
There are no infinite strictly ascending chains, but ...
e Exact addresses at compile-time are rarely known.

e Atthe same program point, typically different addresses are
accessed ...

e Storing at an unknown address destroys all information M.

—— constant propagation fails

—— memory accesses/pointers kill precision

360

Simplification

¢ We consider pointers to the beginning of blocks A which
allow indexed accesses Ali].

¢ We ignore well-typedness of the blocks.

¢ New statements:

z =new(); // allocation of a new block
x = yle]; // indexed read access to a block
yler] = es; // indexed write access to a block

e Blocks are possibly infinite.
e For simplicity, all pointers point to the beginning of a block.

361

Simplification

e We consider pointers to the beginning of blocks A4 which
allow indexed accesses Ali].

¢ We ignore well-typedness of the blocks.

e New statementsi
x=new(); // allocation ofa new block
r=ylel. // indexed read access to a block
yler) = e27 J/ indexed write access to a block

e Blocks are possibly infinite.
e For simplicity, all pointers point to the beginning of a block.

361

The Semantics

Dj

363

The Semantics

Concrete Semantics

A store consists of a finite collection of blocks.

367

After h new-operations we obtain:

Addr, = {refa|0<a<h}
Valh = Add?”h JZ

Storey, = (Addry
State, = (Vars

For simplicity, we set:

X Ng) ¥ Vﬂ[f!

» Valp) x Storey

0 = Null

369

/
/
/
/

addresses
values
store

states

More Complex Example

r = Null;

while (¢ # Null) {
h=t;
= tlo);
h[0] =r
r=h;

1

368

Let (p,p) € States, . Then we obtain for the new edges:

[z =new();] (p,) = (p@{x s refh},

@ {(refh, i) — 0]i € No})
[z =ylel] (o) = (p@{z = plow,[elp)} 1)
[yler] = exi] (o, 1) (p, @ {(py, [ed p) = [e2] p})

370

Let (p,n) € Statey, . Then we obtain for the new edges:

[z = new();] (p, 1)

luled] = exi]l (o, 1)

Alias Analysis

e Distinguish finitely many classes of blocks.

(p@® {x > ref h},

w@ {(refh, i) — 0| i€ Np})
[z =ylel] (o) = (pd{z = plpy [e]p)},p)

370

1. ldea

(o, ® {(py, [e] p) = [e2] p})

e Collect all addresses of a block into one set!

e Use sets of addresses as abstract values!

S

e

Adadr*
Val

Store'
State*

Points-to-Analysis

= Hdges
_ QAmJ

1/

= Addrt %@
%’"}17‘5 — ValF) x Store®

complete lattice !!!

372

creation edges
abstract values
abstract store

abstract states

Caveat

This semantics is too detailled in that it computes with absolute
Addresses. Accordi&g_lx. the two programs:

r = new(); y = new();
y = new(); x = new();

are not considered as equivalent !!?

Possible Solution

Define equivalence only up to permutation of addresses !

37

... in the Simple Example

= [v [on]
0 1]]

£ 10,7 0
Iy

2[TODY (w2y| 0

3((0.0 | (1,2} | (.2
4] (0.0 | (0,23 | (2.2

373

Alias Analysis

1. Idea

e Distinguish finitely many classes of blocks.

e Collect all addresses of a block into one set!

¢ Use sets of addresses as abstract values!

—— Points-to-Anal

Addr = Edges
Vab = e

ysis

Store® = Addr* — Val*

State' = (Vars — Val*) x Store?

// creation edges
// abstract values
// abstract store

J// abstract states

// complete lattice !!!

The Effects of Edges

[JF (D, M)

[(_, Pos(e), _)]]ﬂ (D, M)
[,z =y,)]*(D,M)
[,z =e;,)} (D, M)

[(u, = = new();, v)]* (D, M)
[,z =uyle;,)]} (D,M)

[yles] = a5,)JF (D, M)

T 7

a7z

(D, M)

(D, M)

(D@ {x— Dy}, M)

(D@ {zw 0}, M) , e ¢ Vars
(D@ {z— {(u,v)}}, M)

(D@ {z— M) | feDy}t}, M)
(DM@ {f—(MfUDz)| feDy})

374

... in the Simple Example

0,3 | {(1,2)} || {(1,2)}
0,13 | {(1,2)} || {(1,2)}

(

{00 {21 0
(
(

373

Caveat

The value Null has been ignored. Dereferencing of Null
or negative indices are not detected.

Destructive updates are only possible for variables, not for
blocks in storage!

= no information, if not all block entries are initialized
before use.

The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference
semantics.

In order to prove correctness, we first instrument the concrete
semantics with extra information which records where a block
has been created.

375

The Effects of Edges

[
[
[
[

(L)P (D, M) = (D,M)

(_ Pos(e), I (D, M) = (D, M)

(r=u;,) (D, M) = (D@ {z~ Dy}, M)

(o =e;, (D, M) = (Do{zw— 0}, M)) e & Vars

[(u, z = new();,v)]*(D,M) = (D@ {z+ {(u,v)}}, M)
[z =yl)IHD,M) = (D@ {z s UIM(S) | f € Dy}}, M)
[Coyle] = 2 JE(D,M) = (DM@ {frs (MfUD2)| f €Dy}

374

Caveat

The value Null has been ignored. Dereferencing of Null
or negative indices are not detected.

Destructive updates are only possible for variables, not for
blocks in storage!

—— no information, if not all block entries are initialized
before use.

The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference
semantics.

In order to prove correctness, we first instrument the concrete
semantics with extra information which records where a block
has been created.

375

Caveat

e Thevalue Null has been ignored. Dereferencing of Null
or negative indices are not detected.

« Destructive updates are only possible for variables, not for
blocks in storage!

—= no information, if not all block entries are initialized
before use.

e The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference
semantics.

In order to prove correctness, we first instrument the concrete
semantics with extra information which records where a block
has been created.

375

¢ We compute possible points-to information.
e From that, we can extract -alias information.

¢ The analysis can be rather expensive — without finding very
much.

e Separate information for each program point can perhaps be
abandoned 77

e = 5 (1) (5 %vg}
5 b 5 |
AN

¢ We compute possible points-to information.
¢ From that, we can extract may-alias information.

e The analysis can be rather expensive — without finding very
much.

s Separate information for each program point can perhaps be
abandoned ?7?

376

Each edge (u,lab,v) gives rise to constraints:

lab Constraint

T =1, Plz] 2> Ply

r=new(); | Plz] 2 {(u,v)}

e=ylel, | Ple] 2 U{PIIIf e Plul}

ylell =2 | Pl 2 (FEP)?P] - 0
forall fe Addr

Other edges have no effect.

378

Alias Analysis 2. ldea

Compute for each variable and address a value which safely
approximates the values at every program point simultaneously !

... in the Simple Example

r 40,1}
y [1(L2)}
(0,1) [{(1,2)}
(L2)] 0
377
Discussion
e The resulting constraint system has size O(k-n) for &
abstract addresses and 1~ edges.

e The number of necessary iterations is | O(/(/ + # Vars)) |..

e The computed information is perhaps still too zu precise !I?

e Inorder to prove correctness of a solution s* € States* we
show:

&
] L o]
A A

379

