Script generated by TTT

Seidl: Programmoptimierung (11.11.2015) Title:

Wed Nov 11 10:10:54 CET 2015 Date:

Duration: 92:29 min

Pages: 61

Transformation 2:

$$x = e;$$

$$x \notin \mathcal{L}^*[v]$$

$$v$$

$$x = M[e];$$

$$x \notin \mathcal{L}^*[v]$$

$$v$$

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\begin{array}{ccc} \mathcal{L}[stop] &\supseteq & X \\ \\ \mathcal{L}[u] &\supseteq & \llbracket k \rrbracket^{\sharp} (\mathcal{L}[v]) & & k = (u,_,v) \end{array} \ \text{edge}$$

Solving the constraint system by means of RR iteration.

Since \mathbb{L} is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint \mathcal{L}^* since all $[\![k]\!]^{\sharp}$ are distributive :-)) system equals

211

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$egin{array}{lll} \mathcal{L}[stop] &\supseteq & X \\ \mathcal{L}[u] &\supseteq & \llbracket k
Vert^{\sharp}(\mathcal{L}[v]) & k = (u,_,v) & ext{edge} \end{array}$$

(2) Solving the constraint system by means of RR iteration.

Since \mathbb{L} is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^{\sharp}$ are distributive :-)) Let $\mathbb{L} = 2^{Vars}$.

For $\mathbf{k} = (_, lab, _)$, define $[\![\mathbf{k}]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$\begin{split} & [\![]]\!]^\sharp \, L & = & L \\ & [\![] \operatorname{Pos}(e)]\!]^\sharp \, L & = & [\![] \operatorname{Neg}(e)]\!]^\sharp \, L & = & L \cup \operatorname{Vars}(e) \\ & [\![] x = e;]\!]^\sharp \, L & = & (L \backslash \{x\}) \cup \operatorname{Vars}(e) \\ & [\![] x = M[e];]\!]^\sharp \, L & = & (L \backslash \{x\}) \cup \operatorname{Vars}(e) \\ & [\![] M[e_1] = e_2;]\!]^\sharp \, L & = & L \cup \operatorname{Vars}(e_1) \cup \operatorname{Vars}(e_2) \\ \end{split}$$

200

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\begin{array}{ccc} \mathcal{L}[stop] &\supseteq & X \\ \\ \mathcal{L}[u] &\supseteq & \llbracket k \rrbracket^{\sharp}(\mathcal{L}[v]) & & k = (u,_,v) \end{array} \ \ \text{edge}$$

- (2) Solving the constraint system by means of RR iteration.

 Since L is finite, the iteration will terminate:-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^\sharp$ are distributive :-))

Caveat: The information is propagated backwards !!!

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\begin{array}{lll} \mathcal{L}[\mathit{stop}] & \supseteq & X \\ \\ \mathcal{L}[\mathit{u}] & \supseteq & \llbracket k \rrbracket^{\sharp} \left(\mathcal{L}[v] \right) & k = (\mathit{u}, _, v) & \mathsf{edge} \end{array}$$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[k]^\sharp$ are distributive :-))

211

Example:

Example:

	1	2
7	Ø	
6	$\{y,R\}$	
2	$\{x, y, R\}$	ditto
5	$\{x,y,R\}$	
4	$\{x,y,R\}$	
3	$\{x,y,R\}$	
1	$\{x,R\}$	
0	$\{I,R\}$	

214

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

216

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

x is called truly live at u along a path π (relative to X), either if $x\in X$, π does not contain a definition of x; or if π can be decomposed into $\pi=\pi_1\,k\,\pi_2$ such that:

- k is a true use of x relative to π_2 ;
- π_1 does not contain any definition of x.

222

The set of truely used variables at an edge $\mathbf{k} = (_, lab, \mathbf{v})$ is defined as:

lab	truely used	
;	Ø	
Pos(e)	Vars(e)	
Neg(e)	Vars(e)	
(x)=(e;	$Vars\left(e\right) \qquad {\color{red}(*)}$	
M[e]	$Vars\left(e\right) \qquad ext{(*)}$	
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$	

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

```
x is called truly live at u along a path \pi (relative to X), either if x\in X, \pi does not contain a definition of x; or if \pi can be decomposed into \pi=\pi_1 \boxed{k\,\pi_2} such that:
```

- k is a true use of x relative to π_2 ;
- π_1 does not contain any definition of x.

222

(*) – given that x is truely live at v w.r.(π_2):-)

Example:

225

Example:

Example:

226

Example:

The Effects of Edges:

230

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

The Effects of Edges:

231

The Effects of Edges:

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !! To see this, consider for $\mathbb{D}=2^U$, $fy=(u\in y)?b:\emptyset$ We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

= $(u \in y_1 \lor u \in y_2)?b: \emptyset$
= $(u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$
= $f y_1 \cup f y_2$

233

 True liveness detects more superfluous assignments than repeated liveness !!!

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !! To see this, consider for $\mathbb{D}=2^U$, $fy=(u\in y)?b$: \emptyset We verify:

$$f(y_{1} \cup y_{2}) = (u \in y_{1} \cup y_{2})?b: \emptyset$$

$$= (u \in y_{1} \lor u \in y_{2})?b: \emptyset$$

$$= (u \in y_{1})?b: \emptyset \cup (u \in y_{2})?b: \emptyset$$

$$= f y_{1} \cup f y_{2}$$

⇒ the constraint system yields the MOP :-))

234

True liveness detects more superfluous assignments than repeated liveness !!!

Liveness:

1.3 Removing Superfluous Moves

Example:

$$T = x + 1;$$

$$y = T;$$

$$M[R] = y;$$

This variable-variable assignment is obviously useless :-(

238

 True liveness detects more superfluous assignments than repeated liveness !!!

True Liveness:

$$\emptyset \qquad ; \qquad x = x - 1$$

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless :-(

238

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless :-(

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless :-(Instead of y, we could also store T :-)

240

1.3 Removing Superfluous Moves

Example:

Advantage: Now, y has become dead :-))

1.3 Removing Superfluous Moves

Example:

$$T = x + 1;$$

$$y = T;$$

$$M[R] = y;$$

This variable-variable assignment is obviously useless :-(Instead of y, we could also store T :-)

239

1.3 Removing Superfluous Moves

Example:

Advantage: Now, y has become dead :-))

242

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathbb{V} = (Expr \setminus Vars) \rightarrow 2^{Vars}$...

243

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathbb{V} = (Expr \setminus Vars) \rightarrow 2^{Vars}$...

1.3 Removing Superfluous Moves

Advantage: Now, y has become dead :-))

242

Idea:

For each expression, we record the variable which currently contains its value :)

We use: $\mathbb{V} = Expr \rightarrow 2^{Vars}$ and define:

In the Example:

$$\begin{cases} x+1 \mapsto \{T\}\} & 2 \\ y=T; \\ \{x+1 \mapsto \{y,T\}\} & 3 \\ M[R]=y; \\ \{x+1 \mapsto \{y,T\}\} & 4 \end{cases}$$

ightarrow We propagate information in forward direction :-) At *start*, $V_0 e = \emptyset$ for all e;

In the Example:

$$\{x+1\mapsto\{T\}\} \qquad T=x+1;$$

$$\{x+1\mapsto\{y,T\}\} \qquad y=T;$$

$$\{x+1\mapsto\{y,T\}\} \qquad M[R]=y;$$

$$\{x+1\mapsto\{y,T\}\} \qquad 4$$

246

 ${\color{red} \rightarrow} \quad \sqsubseteq \; \subseteq \; \mathbb{V} \times \mathbb{V} \quad \text{is defined by:}$

$$V_1 \sqsubseteq V_2 \quad \text{iff} \quad V_1 \, e \quad \supseteq \quad V_2 \, e \qquad \text{ for all } \quad e$$

 \rightarrow $\sqsubseteq \subseteq \mathbb{V} \times \mathbb{V}$ is defined by:

$$V_1 \sqsubseteq V_2$$
 iff $V_1 e \supseteq V_2 e$ for all e

248

Observation:

The new effects of edges are distributive:

To show this, we consider the functions:

- (1) $f_1^x V e = (V e) \setminus \{x\}$
- (2) $f_2^{e,a} V = V \oplus \{e \mapsto a\}\}$
- (3) $f_3^{x,y} V e = (y \in V e) ? (V e \cup \{x\}) : ((V e) \setminus \{x\})$

Obviously, we have:

By closure under composition, the assertion follows :-))

ightarrow $\sqsubseteq \subseteq \mathbb{V} \times \mathbb{V}$ is defined by:

$$V_1 \sqsubseteq V_2$$
 iff $V_1 e \supseteq V_2 e$ for all e

248

analogously for the diverse stores

Observation:

The new effects of edges are distributive:

To show this, we consider the functions:

- (1) $f_1^x V e = (V e) \setminus \{x\}$
- $(2) f_2^{e,a} V = V \oplus \{e \mapsto a\}\}$
- (3) $f_3^{x,y} V e = (y \in V e) (V e \cup \{x\}) ((V e) \setminus \{x\})$

Obviously, we have:

$$\begin{split} [\![x=e;]\!]^{\sharp} &= f_2^{e,\{x\}} \circ f_1^x \\ [\![x=y;]\!]^{\sharp} &= f_3^{x,y} \\ [\![x=M[e];]\!]^{\sharp} &= f_2^{e,\emptyset} \circ f_1^x \end{split}$$

By closure under composition, the assertion follows :-))

240

(1) For
$$fVe = (V_X \setminus \{x\}, \text{ we have:} \bot X)$$
 $\{v_1 \sqcup V_2\} e = ((V_1 \sqcup V_2) e) \setminus \{x\}$ $= ((V_1 e) \cap (V_2 e)) \setminus \{x\}$ $= ((V_1 e) \setminus \{x\}) \cap ((V_2 e) \setminus \{x\})$ $= (f V_1 e) \cap (f V_2 e)$ $= (f V_1 \sqcup f V_2) e$ \Rightarrow

analogously for the diverse stores

(2) For
$$fV = V \oplus \{e \mapsto a\}$$
, we have:

$$\begin{array}{lll} f\left(V_{1} \sqcup V_{2}\right) e' & = & \left(\left(V_{1} \sqcup V_{2}\right) \oplus \left\{e \mapsto a\right\}\right) e' \\ & = & \left(V_{1} \sqcup V_{2}\right) e' \\ & = & \left(f \, V_{1} \sqcup f \, V_{2}\right) e' & \text{given that} & e \neq e' \end{array}$$

$$\begin{array}{ll} f\left(V_{1} \sqcup V_{2}\right) e & = & \left(\left(V_{1} \sqcup V_{2}\right) \oplus \left\{e \mapsto a\right\}\right) e \\ & = & a \\ & = & \left(\left(V_{1} \oplus \left\{e \mapsto a\right\}\right) e\right) \cap \left(\left(V_{2} \oplus \left\{e \mapsto a\right\}\right) e\right) \\ & = & \left(f \, V_{1} \sqcup f \, V_{2}\right) e & \vdots \end{array}$$

(1) For $f V e = (V e) \setminus \{x\}$, we have:

$$f(V_1 \sqcup V_2) e = ((V_1 \sqcup V_2) e) \setminus \{x\}$$

$$= ((V_1 e) \cap (V_2 e)) \setminus \{x\}$$

$$= ((V_1 e) \setminus \{x\}) \cap ((V_2 e) \setminus \{x\})$$

$$= (f V_1 e) \cap (f V_2 e)$$

$$= (f V_1 \sqcup f V_2) e : \cdot)$$

250

(3) For $f V e = (y \in V e) ? (V e \cup \{x\}) : ((V e) \setminus \{x\})$, we have:

$$f(V_1 \sqcup V_2) e = (((V_1 \sqcup V_2) e) \setminus \{x\}) \cup (y \in (V_1 \sqcup V_2) e) ? \{x\} : \emptyset$$

$$= ((V_1 e \cap V_2 e) \setminus \{x\}) \cup (y \in (V_1 e \cap V_2 e)) ? \{x\} : \emptyset$$

$$= ((V_1 e \cap V_2 e) \setminus \{x\}) \cup$$

$$((y \in V_1 e) ? \{x\} : \emptyset) \cap ((y \in V_2 e) ? \{x\} : \emptyset)$$

$$= (((V_1 e) \setminus \{x\}) \cup (y \in V_1 e) ? \{x\} : \emptyset) \cap$$

$$(((V_2 e) \setminus \{x\}) \cup (y \in V_2 e) ? \{x\} : \emptyset)$$

$$= (f V_1 \sqcup f V_2) e \qquad (\bullet)$$

(2) For $fV = V \oplus \{e \mapsto a\}$, we have:

$$\begin{array}{lcl} f \, (V_1 \sqcup V_2) \, e' & = & \left((V_1 \sqcup V_2) \oplus \{e \mapsto a\} \right) e' \\ \\ & = & \left(V_1 \sqcup V_2 \right) e' \\ \\ & = & \left(f \, V_1 \sqcup f \, V_2 \right) e' \qquad \text{given that} \quad e \neq e' \end{array}$$

$$f(V_1 \sqcup V_2) e = ((V_1 \sqcup V_2) \oplus \{e \mapsto a\}) e$$

$$= a$$

$$= ((V_1 \oplus \{e \mapsto a\}) e) \cap ((V_2 \oplus \{e \mapsto a\}) e)$$

$$= (f V_1 \sqcup f V_2) e : -)$$

251

We conclude:

- → Solving the constraint system returns the MOP solution :-)
- ightarrow Let $\mathcal V$ denote this solution.

If $x \in \mathcal{V}[u]\,e$, then x at u contains the value of e — which we have stored in T_e

 \Longrightarrow

the access to x can be replaced by the access to T_e :-)

For $V \in \mathbb{V}$, let V^- denote the variable substitution with:

$$V^- x = \begin{cases} T_e & \text{if } x \in V e \\ x & \text{otherwise} \end{cases}$$

if $Ve \cap Ve' = \emptyset$ for $e \neq e'$. Otherwise: $V^-x = x$:-)

Transformation 3 (cont.):

$$\begin{array}{ccc}
u & & \sigma = \mathcal{V}[u]^{-} & & \\
M[e_{1}] = e_{2}; & & & M[\sigma(e_{1})] = \sigma(e_{2})
\end{array}$$

255

Example: a[7]--;

Procedure as a whole:

Availability of expressions:

+ removes arithmetic operations

inserts superfluous moves

2) Values of variables: T3

creates dead variables

(3) (true) liveness of variables: T2

+ removes assignments to dead variables

256

T1

Example: a [7] --;

Example (cont.): a [7] --;

259

Example (cont.): a [7] --;

