Script generated by TTT

Title:
Date:
Duration:

Pages:

Seidl: Programmoptimierung (11.11.2015)
Wed Nov 11 10:10:54 CET 2015
92:29 min

61

Transformation 2:

T & L]

& Lr[v]

r = Mle; ﬁ

=0 =0
GO~0O =<0

209

Computation of the sets L*[u] : 40 P A g

(1) Collecting constraints:

L][stop]
Llu]

X

2
o [KF(L[v]) k= (u, ,v) edge

(2) Solving the constraint system by means of RR iteration.
Since L is finite, the iteration will terminate :-)

(3) Ifthe exit is (formally) reachable from every program
point, then the smallest solution £ of the constraint
system equals £* sinceall [k]* are distributive

21

Computation of the sets L*[u] :

(1) Collecting constraints:

L[stop] 2> X

L[u] o [k (L) k= (u,_,v) edge

(2) Solving the constraint system by means of RR iteration.
Since L is finite, the iteration will terminate :-)

(3) Ifthe exitis (formally) reachable from every program

point, then the smallest solution £ of the constraint
system equals £* since all [k]* are distributive

211

Let L= 2‘"(11'.9 .
For k=(_,lab,_),define [k]*=[lat]* by:

LFFL =L
[Pos(e)]* L = [Neg(e)]f L = LU Vars(e)
[+ =¢]f L = (L\{z}) U Vars(e)

[z = Mle];]* L
[Mlei] = ex;]F L

(LA\{z}) U Vars(e)
L U Vars(e;) U Vars(ez)

200

Computation of the sets L*[u] :

(1) Collecting constraints:
Llstop] 2 X
Lu] > [k (L)) k=(u,_,v) edge

(2) Solving the constraint system by means of RR iteration.
Since L is finite, the iteration will terminate :-)

(3) Ifthe exitis (formally) reachable from every program
point, then the smallest solution £ of the constraint
system equals £* sinceall [k]* are distributive :-))

Caveat: The information is propagated backwards !!!

212

Computation of the sets £*[u] :

(1)

Collecting constraints:

X
[K]* (L[v]) k= (u,_,v) edge

Llstop] 2
Lu] .}
Solving the caonstraint system by means of RR iteration.
Since L is finite, the iteration will terminate :-)

If the exit is (formally) reachable from every program

point, then the smallest solution £ of the constraint
system equals £* sinceall [k]* are distributive :-))

21

Example:

Llo] 2 (L[I\{=}) U{l}

L] 2 LNy}

2] O U{zhu(LBlu{z})
3 2 (LM U]

£l 2 (LB\z}) Uz

L5 2 L2

L] 2 Lfu{y, R}

L 20

213

Example:

6 {y R}
2 | {xz,y, R} | ditto
Ly, R}
{z,y, R}
x,y, R}
{z, R}
{I,R}

(o]
N

)

o

214

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further
variables:

y, R o y, R
@y +1; r=y+ 1;
x,y, R o y, R

—) ,

® ur ® wr
M[R]=uy; M[R] =y,

® o OX

220

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further
variables:

%): =y+1;

9 5

) wR

MIR] = y;

0

216

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further
variables:

3) wR (3) wR

MI[R] = y; MI[R] = y;

®
ON OX

221

M[R] =y,

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

z s calledtruly live at u« along a path = (relative to X), either
if X, =does notcontain a definition of z; or
if 7 canbedecomposedinto « =m k7 such that:

e Lk isatrue use of x relative to m3;
¢ m does not contain any definition of .

222

O r @B OO0

The set of truely used variables at an edge & = (_, lab,v) is
defined as:

lab truely used
: 0

Pos (e) Vars (e)
Neg (e) Vars (e)

Vars (¢) (*)
% \@ Vars (¢) (%)

Mie;| = es; Vars(e,) U Vars(es)

223

Re-analyzing the program is inconvenient :-(

Analyze true liveness!

is called truly live at « along a path = (relative to X), either

7 does not contain a definition of z; or

if 7 canbedecomposedinto =« =m|k7:| such that:

is a true use of z relative to m2;
does not contain any definition of .

222

(¥) —giventhat =z istruely live at nw.r@)

224

Example:

r=vy+ 1;

O~ O~0~0

z=2%a
M[R] = y;
]
225
Example:
r=vy+1;
@ wr
z=2%mx
®
MIR] = y;
@ o
227

Example:

(3) wR

MI[R] =y,

O

Example:

y, R
r=y+1:

o iy, R

z=2%ux

() wr

MR] =y,

O

226

229

M[R] = y;

The Effects of Edges: The Effects of Edges:

L = L AL = L

[Pos(e)]* L = [Neg(e)]*L = LU Vars(e) [Pos(e)]* L = [Neg(e)]*L = LU Vars(e)
el = (\ahU Vars(c) f=elfl = (IAM#DU (& € L)? Vars(e): 0
[t =ML = (L\{z})uU Vars(e) [t =M[e;FL = (I\{z})U (x € L)? Vars(e):
[Mle,] =ex]F L = LU Vars(e;)U Vars(es) [Mley =ex]P L = LU Vars(e,)U Vars(ez)

230 231

Note: The Effects of Edges:

e The effects of edges for truely live variables are more
complicated than for live variables :-)

[_

o Nonetheless, they are distributive !! [Pos(e)F L = [Neslq) L~
[z =e]f L : : ! e):
[x=MelJ*L = (I\{zHU (z €L)? Vars(e): 0
[/

Mley] = ex]* L = LU Vars(e;) U Vars(e;)

232 23

Note:

e« The effects of edges for truely live variables are more
complicated than for live variables :-)

e Nonetheless, they are distributive !!

To see this, considerfor D =2Y, fy=(uey)?h: 1 We
verify:

fnUy) = (veynUy)?h: 0

= (uey Vuey)?h:
(wey)?b: DU (uwey)?b: 0
fun U fu

233

e True liveness detects more superfluous assignments than
repeated liveness !!!

235

Note:

e The effects of edges for truely live variables are more
complicated than for live variables :-)

e Nonetheless, they are distributive !!

To see this, considerfor D=2V, fy=(uecy)?b: B We
verify:

flnUmw) = (uepnUy)?h: 0
(uEyl\/uEy;)?b: 1]
(wey)?h: QU (uey)?b: 0

finufy

—— the constraint system yields the MOP :-))

234

e True liveness detects more superfluous assignments than
repeated liveness !!!

Liveness:

(2} ff_) e=e-1
b

236

1.3 Removing Superfluous Moves

Example:
®
T=x+1
©
y=T;
®
M[R] = v;

®

This variable-variable assignment is obviously useless :-(

238

e True liveness detects more superfluous assignments than
repeated liveness !!!

True Liveness:

237

1.3 Removing Superfluous Moves

Example:
®
T'=x+1
©
y="T,
®
M[R] =y

This variable-variable assignment is obviously useless

238

1.3 Removing Superfluous Moves

Example:
®
T=xz+1
©
y=T;
®
MR =y

This variable-variable assignment is obviously useless

238

1.3 Removing Superfluous Moves

Example:
TXx+1; ?T.rll:
y=T, -\ ?y =T,
M[R] = v; M[R]|=T;

®

This variable-variable assignment is obviously useless :-(
Instead of y, we could also store 7 :-)

240

1.3 Removing Superfluous Moves

Example:
®
T=x+1; T=z+1;
@
y=1T; ‘ y="T;
® ®
MI[R] {y; MR £T;

©)

Advantage: Now, y hasbecomedead :))

241

1.3 Removing Superfluous Moves

Example:
®
T=x+1;
©
y=T;
®
MI[R] =(y;

®

This variable-variable assignment is obviously useless :-(
Instead of y, we could also store 7' :-)

239

1.3 Removing Superfluous Moves

Example:
® @
T=x+1; T=z+1 T=xr+1
© @
y=1T,; - y=1T - ;
® ® ©,
M[R] =y M[R] =T M[R] =T
® ©, ©),
Advantage: Now, y hasbecomedead :))

242

Idea:

For each expression, we record the variable which currently
contains its value :-)

We use: V= (Ezpr\ Vars) — 2Vers

243

Idea:

For each expression, we record the variable which currently
contains its value :-)

We use: V = (Expr\ Vars) — 2Ver

243

1.3 Removing Superfluous Moves

Example:
® \E qy) (?
T T=xz+1; T=x+1 T=x+1
©
y=T - y=T - ;
———
T O ® ©,
M[R] =y MIR]=T MIR]=T
® ®
Advantage: Now, v hasbecomedead :))
242
Idea:

For each expression, we record the variable which currently
contains its value—:-)

We use: V= Eupr™— 2V and define:

8 _ :
L1*v v n'

[Pos(e)]* = [Neg(e)fVe =) .
otherwise

244

In the Example:

[= c]fV e _ (Ve)ulz} if ¢=c¢
(Ve\{z} otherwise b Q)
TS B (Ve)u{z} if yeVe T=xz+1
[r=y]"Ve = L (Vo) otherwise e+ 10 {T)} (2))
y=T,
{} it e =e , ‘
r=elt Ve — {r+1
L=l Ve { (Ve\{z} otherwise @ o MIR] = y;
[t =M[]]fVe = (V)\{z} {z+1—{y,TH @ T\
[t = MQ]JfVe = (1/(.")‘\{1'}
[z=Mle]]*Ve = g o= (
(V ¢') 84, otherwise
[! analogougly for the diverse stores
k(e (ﬁ\ =C 5 ﬂ
245 246

» L C VxV isdefined by:

In the Example: ViCV, iff Vie D Vye forall e

» We propagate information in forward direction :-)

At start, Voe=10 forall ¢;

247 248

» LCC VxV isdefined by: » CC VxV isdefinedby:

VicV, iff Vie 2 Ve forall e ViCEV;, iff Vie D Ve forall e

6@\\/&0 —S)

248 248
Observation:
(Veayu{z} if ¢=c¢
istributive: z=c]tve
The new effects of edges are distributive: [z=c]'Ve { (VeN(z} otherwise
To show this, we consider the functions: [r = f}:}]@ _) Veulep if yeVe
' V()\{ '} otherwise
(1) fiVe=(Velfz} if o =
€,a p i g 1t ! — ST
@) f"V=Vd{ea}} =l Ve { (Ve)\{z} otherwise
fi'Ve= 2(V %
(3) Ve=(yeVe)?(Veu{z}):(Ve)\{a}) [« = M[JEVe = (VeN|a}
Obviously, we have: [= M[yPVe = (Ve)\{z}
=el = 5of [— mipve - {° fef=c
[=y = fov (Ve\{z} otherwise
[r = Mle]]} = fiPofr ! analogously for the diverse stores

By closure under composition, the assertion follows :-))

249 245

Vo

Observation:
The new effects of edges are distributive:

To show this, we consider the functions:

(1) f{ Ve= (V(;)\{:r'}

2y f"V=Vale—a
(B) fi¥'Ve=(ye Vr:)@ -C((V(-,)\{.,‘}}

Obviously, we have:
[+=clF = fTofr
[z = ;]! = fY
[t =M[e;]* = f5 2o I

By closure under composition, the assertion follows

249

0 For fv(:.{m\m-@ea%e': f:(u {c H%“ﬂ

FuVye = ((iuVa)e\{s}
((Vie) N (Vo))\{z}

= (M=) N (el fah)
= (V)N (fVae)
ViufVae =)

250

=)

!

(@)

(Veyu{z} if ¢=c

[z=c]Ve —
(Ve\{z} otherwise
r=y]fVe =
o (VeNa} otherwise
[r=¢]'Ve — if ¢=e

(Vf’)\{ '} otherwise
[z = MV e ¢)\{z}
[t=M[yfVe = (Ve\{x}

[t = MejfVe = { 0 if ¢ = (
(Ve\{z} otherwise

{(vf)u{} if yeVe
v
(

! analogously for the diverse stores

245

For fV =V ®{er a}, we have:

fiuwy)e = (Viuv)@{e—al)e
— (huve

= (fWiufVe)e’ giventhat e+ ¢

fiuz)e = (VuV)d{eral)e
= a
= (Vio{e—ab)e)n((Vad {ew a})e)
— (fViufV)e)

251

(1) For fVe=(Ve)\{z}, we have:

fWiuW)e = ((ViuVy)e)\{z}

= (ie)n(Vae)\{z}

= (Vefzh)n ((Vae)\{z})
(fVie)n(fVee)
(fviufWa)e =)

250

(3) For fVe=(yeVe)?(Veu{z}):((Ve)'\{z}), we have:

ANAE

(ViU Vo) N2} U (y € (Vi U Va))7 {} -0
(VienVee\{zh) U(y €(VienVae)) 7 {z}:0
((VienVa e} U
(veWie)?{z}:0)Nn((yeVae)?{z}:0)
(iMeh U (g €Vie) P} 0)
(VD U (0 €Vae) ? {x}:0)

(fViL fVa)e)

252

()

For fV =V @ {e— a}, we have:

FiuVy) e = (ViUuVe) @ f{ersal)e

= (Viuvy)e

= (fhuf)e

giventhat e # ¢

fiuwy)e = (VLuV)@{emal)e

= a

= (Vidm{e—ape)n((Va® {e— a})e)
= (fViufW)e)

251

We conclude:

For

Solving the constraint system
Let V denote this solution.

If zeVule,then = at
which we have stored in 7.

—
B

returns the MOP solution :-)

u contains the value of ¢ —

the accessto = can be replaced by the accessto 7.

=)

VeV,let V- denotethe variable substitution with:

_ T,
Vor =
{ X

ifzreVe
otherwise

if VenVe =0 for e#¢ . Otherwise: V r =2z :)

253

Transformation 3 (cont.):

o= V|~
?.r = M|e]; ﬁ
O

o= V|~
(?M[f.l} = e3; d
O

255
Example: al7]1--;
L =A+7
A1 =A4T A1 =T
B M[A B M[A
1 viAy T 1 VA
B By —1 Tz By —1
Ag A+T By T
M[As] = B; TN =A+T
Ag Ty
M[Az Bz

257

r= Mlo(e)];

Mlo(ey)] =o(es);

O O

Procedure as a whole:

(1) Availability of expressions:

+ removes arithmetic operations

— inserts superfluous moves

(2) Values of variables:

+ creates dead variables

(3) (true) liveness of variables:

T3

T2

+ removes assignments to dead variables

256
Example: a[7]1--;
T A+T;
Ar=A+T Ay =Ty
By = M[A By = M[A
1 ¥ 1 T1.1 1 v 1
Bj By —1 Tz By —1
A =A+T; By Ta;
M[Az) = Bs Ty = A+7
Ap =T
M[Az Bgz;
258

T12

T =A+T;

A =T

By = M[A

Ty =B, -1

By =Ty

Az =T

M[Az Bgz;

T

Ay

M

By —1

[A1]

By

By

MIT,
M

A+T
T,
M[T:]
By —1
Ty
T,

Ty
259

Ty = A+ 7
Ay Ty
By = M[Ty
Ty = By — 1
By =Ta
Ay Ty
MITy] = Ty;

260

Ty
By
T2
Ty
M[TY
M

M [T1];
M

By -1

