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... end of background on:  Complete Lattices

Final Question

Why is a (or the least) solution of the constraint system useful ?7??

For a complete lattice 1D, consider systems:

T|[start]
T

do

.|
3 [&]* (Z[u)) k= (u,_,v) edge

where dyeD andall [k]*:D — D are monotonic ...

— Monotonic Analysis Framework
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... end of background on: ~ Complete Lattices

Final Question
Why is a (or the least) solution of the constraint system useful 7?77
For a complete lattice 1D, consider systems:

T[start] 3 do
Zlv] 3 [k]*(Z[u)) k= (u,_,v) edge

where dy €D andall [k]*: D — D are monotonic ...

152

Wanted: MOP  (Merge Over all Paths)

'] = | {7l do | 7 : start —* v}
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... end of background on:  Complete Lattices

Final Question

Why is a (or the least) solution of the constraint system useful ?7??

For a complete lattice 1, consider systems:

I[start] 3 do
AG 3 [&]* (Z[ul) k=(u ,v) edge

where dye D andall [k]*:D — D are monotonic ...

— Monotonic Analysis Framework
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Wanted:  MOP (Merge Over all Paths)

'] = |_|{[[7r]|idg | 7« start —* v}

Theorem Kam, Ullman 1975

Assume 7 is a solution of the constraint system. Then:

Iv] 3 T[] forevery v
=

185

Wanted: MOP (Merge Over all Paths)

] = Ll{|[7r]]’dg | 7o start —* v}
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Proof: Induction on the length of 7.
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Proof: Induction on the length of .
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Proof: Induction on the length of 7.

Foundation: =w=¢ (empty path)
Then:
[7]* do = [€]* do = do T I[start]
Step: w=7k for k= (u,_,v) edge.
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Proof: Induction on the length of .

Foundation: 7 =¢ (empty path)
Then:
[7]* do = [€e]f do = do T Z[start]
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Proof: Induction on the length of 7.

Foundation: =« =¢ (empty path)
Then:
[7]F do = [€]* do = dyp T T[start]
Step: w=ak for k=(u,_,v) edge.
Then:

[7]% do

I

Tlu] by I.H. for

(K] ([} do)
[K]* (Z[w]) since [k]"

— ﬁ’ﬂ'ﬂj dg

I

Ij -

/
s

monotonic

I[-u]l since Z solution



Disappointment Disappointment

Are solutions of the constraint system just upper bounds 777 Are solutions of the constraint system just upper bounds 777

Answer

In general: yes
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Disappointment

Are solutions of the constraint system just upper bounds 777

Answer

In general: yes

With the notable exception when all functions  [k]* are
distributive ...

Gary A. Kildall (1942-1994).
Has developed the operating system CP/M and GUls for PCs.
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Gary A. Kildall (1942-1994).
Has developed the operating system CP/M and GUIs for PCs.
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The function f:D; — Dy is called

e distributive, if f(|X)=|{fz]|ze X} forall()#X CD;
e strict,if fL=1.
e totally distributive, if f is distributive and strict.

Examples

e fr=zxznaub for a,bCU.

Strictness:  f0=anub=b=0 whenever b=10
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The function f:I)y — Dy iscalled

e distributive, if f(JX)=||{fx|zec X} forall ) # X CD;
e strict,if fl=1.
e totally distributive, if f is distributive and strict.
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e Dh=D=NU{cx}, incz=z+1
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functlon f oy 2 |s called 6
A 's .
/‘f ie |3Tf|but\ve |f~Lf |_?}" r|x EqX} for all%# X CDh;

e strict,if flL=.1.

%Co(ﬁ‘hjtal)pg sﬁl{gxezl f=is d@tﬁ%éng{éﬂcb) ™
Examples ( q‘ M }“1_(*'(‘3‘)

:o ﬁ'a:—a:ﬁaﬂbf}or le(U Q. ﬂ}(_ MY lo\./
Q‘Strlcﬁ‘esgﬂ Qf(m}:(ﬁ]n DUp= & 1] whenever h=10

Distributivity:

f(z1Uz2) = an(ziUz2)Ub
= anNrUaNzaUb
= f’JC-lUfIQ
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¢ Di=Dy=NU{x}, incz=z+1

Strictness: 1 =inc0=1 # |
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/f(m’l R AR, mxy Y 5
%Qcﬁ) A qﬁ’(x,ﬂ = @’“MU'D)”\

(N x ub)

"'-UQAX k=%
i ﬂ?‘&ﬂbbﬁb

— aQ¥X, nx
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e Dh=D=NU{cx}, incz=z+1
Strictness: [l =inc0=1 # 1

Distributivity: f([|X) = |U{z+1|ze X} for
£ X
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D)y =Dy =NuU{co}, incr=xz+1

Strictness: f1l=inc0=1 # 1
Distributivity: (| JX) = |[H{z+1|ze X} for
h#X

Dl = (N @] {O()})g, DQ =NU {OO}, f(I]_.,SL’Q) =1 + To

173

Remark

If f:I — 1y isdistributive, then also monotonic.
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Dy =D =NU{x}, incz=z+1

Strictness: f1l=incO0=1 # 1
Distributivity: f(JX) = |[[H{z+1|ze X} for
h#X

Dl = (N V] {OO})2, Dz =NU {DQ}, f(ﬂfl,ﬂfg) =T + To .
Strictness: 1 =0+0 = 0
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Dy =D, =NU{cc}, incz=z+1

Strictness: [l =inc0=1 # 1
Distributivity: f([|X) = |U{z+1|ze X} for
h£X

Dl = (N U {OCJ})Q, DQ =NuU {DO}, f(f[.’l,ﬂfg) =T+ Xz !
Strictness: f1=0+0 = 0
Distributivity:

FILHUE1) = f(4,4) = 8
# 5 = f(L,4Uf(41)
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Remark

If f:D; — D isdistributive, then also monotonic.
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Remark

If f:I — 1y isdistributive, then also monotonic.

Obviously: aC b iff allb=bh
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Remark

If f:Dy — Dy isdistributive, then also monotonic.

Obviously: aCT b iff aub=h
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Remark

If f:I — by isdistributive, then also monotonic.

Obviously: aC b iff allb=h.

From that follows:

fo = flaud)

falUfb

178



Assumption: all v

Assumption: all o

Then:

Theorem

If all effects of edges
forall w.

Proof

It suffices to prove that

For this, we show that

are reachable from start.
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are reachable from start.

Kildall 1972

[k]* are distributive, then:  Z*[v] = Z[v]

I* is a solution!

T* satisfies all constraints.
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Assumption: all
Then:

Theorem

If all effects of edges [k]* are distributive, then:

forall wv.

(1)

We prove for

T*[start]

v are reachable from start.

Kildall 1972
I*v] =
180
start :
= U{[[Wﬂjdn | 72 start —* start}
3 [el*do
J dy
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(1) We prove for start:
[_I{[[?T]]:dg | 7 : start —* start}

[€]* do
do

I*[start]

iy

(2) Forevery k= (u,_ ,v) we prove:

T* [.“]

L7 do | 7 : start —* v}
L=k  do | 7" : start —* u}
LHIERF ([7')* do) | = - start —* u}
[KF (LH =P do | =" : start —* u})
[k]F (Z*[u])

since {x' |« : start —»* u} is non-empty.

L[ |
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Caveat

¢ Reachability of all program points cannot be abandoned!
Consider:

\é where D =NU {x}

Then:
2] = inc0 =
#2) = U0 =
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Caveat

e  Reachability of all program points cannot be abandoned!
Consider:

\é) where I =NU {co}
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P AL SRS

(7 val\y

»  The effects of edges of the analysis of availability of
expressions are distributive:

Summary and Application

(aU(zNa))\b = ((aUz)N(aUzz))\b
= ((aUz)\D) N ((aUxz)\b)

189



Summary and Application

»  The effects of edges of the analysis of availability of
expressions are distributive:

(aU(zyNz))\b = ((@Uzy)N{aUzy))\b
((aUz)\b) N ((aU z2)\b)

»  If all effects of edges are distributive, then the MOP can be
computed by means of the constraint system and
RR-iteration.

190

1.2 Removing Assignments to Dead Variables
Example:

1: T=Yy+2;
2: Yy =5
3 r=y+3;

The value of = atprogram points 1,2 is over-written before it
can be used.

Therefore, we call the variable = dead at these program points
)
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Summary and Application

> The effects of edges of the analysis of availability of
expressions are distributive:

(aU(zyNxg))\b ((aUzy) N(aUz))\b

((a Uz )\b) N ((aUxz2)\b)

»  If all effects of edges are distributive, then the MOP can be
computed by means of the constraint system and
RR-iteration.

»  If not all effects of edges are distributive, then RR-iteration
for the constraint system at least returns a safe upper bound
to the MOP.
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1.2 Removing Assignments to Dead Variables
Example:

1: r=y+2;
2: y =5
3: r=y+3;

The value of = atprogrampoints 1,2 is over-written before it
can be used.

Therefore, we call the variable » dead at these program points
-)
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Note:

> Assignments to dead variables can be removed ;-)

> Such inefficiencies may originate from other transformations.
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Note:

»  Assignments to dead variables can be removed ;-)

> Such inefficiencies may originate from other transformations.

Formal Definition:

The variable = iscalledlive at » alongthe path = starting
at u» relativetoaset X of variables either:

if reX and = doesnotcontaina definitionof =z; or:
if 7 canbedecomposedinto: 7 =mkm such that:
e Lk isauseof z;and

e m does not contain a definition of .
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Note:

> Assignments to dead variables can be removed ;-)

> Such inefficiencies may originate from other transformations.

Formal Definition:

The variable = is called live at « along the path = starting
at u relativetoaset X of variables either:
if xe€X and = doesnotcontain a definition of =; or:

if 7 canbedecomposedinto: 7 =m km such that:

e Lk isauseof z:;and

e m does not contain a definition of .
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k

@—~O0~0—0O

Thereby, the set of all defined or used variables at an edge
k=(_lab,_) is defined by:

lab used defined
0 0

Pos (e) Vars (e) [}

Neg (e) Vars (e) 1]

L= Vars (e) {z}

z = Mle|; Vars (e) {z}

Meq] = eq; | Vars (e;) U Vars (e3) ]

195



Avariable = whichisnotliveat « along = (relativeto X)
iscalled dead at u» along = (relativeto X).

Example:

r=y+2; ¥ ] T=y+3;
(T IE)
O—0—0—0

where X = (. Then we observe:

live | dead

{v}| {=}
0 | {z,y}

{v}| {z}
0 | {z, y}

W b
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The variable = isliveat u (relativeto X)if = isliveat u
along some path to the exit (relative to X). Otherwise, = is
called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every
u 7277
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The variable = isliveat w (relativeto X)if =z isliveat u
along some path to the exit (relative to X). Otherwise, = is
called dead at u (relative to X).
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The variable = isliveat w (relativeto X)if z= isliveat wu
along some path to the exit (relative to X). Otherwise, = is
called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every
u???

Idea:

For every edge k = (u,_,v), define a function [k]* which
transforms the set of variables which are live at v into the set of
variables which are live at  « ...
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Let L =2,

For k= (_,lab,_),define [k]*=[lab]* by:

LIFL = L

[Pos(e)]* L = [Neg(e)]f L = LU Vars(e)
[r=¢]fL = (L\{z}) U Vars(e)

o= MEJFL = (I\{z})U Vars(e)

[Mley] = ex;]P L

LU Vars(e;) U Vars(c

[‘K = X 44 }C?x,g})
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We verify that these definitions are meaningful :-)

y =5 y+2; Myl =1

T =1+ 2
o

ON
S

©
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We verify that these definitions are meaningful :-)

y+2; My =z
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We verify that these definitions are meaningful :-)
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We verify that these definitions are meaningful

)

Transformation 2:

v ¢ L]

"
5

GO~0O =<0

T = JI[(:}:

@~0 G=0

The set of variables which are live at « thenis given by:

L u] = U{[[Tr}]iX | m:u —" stop}

... literally:

e Thepathsstartin o )
—— Aspartial orderingfor L. weuse LC=C.

¢ The set of variables which are live at program exit is given by
theset X :-)
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Correctness Proof:

»  Correctness of the effects of edges: If L s the set of
variables which are live at the exit of the path = , then
[7]* L is the set of variables which are live at the beginning
of v )

> Correctness of the transformation along a path: If the value

of a variable is accessed, this variable is necessarily live.
The value of dead variables thus is irrelevant  :-)

»  Correctness of the transformation: In any execution of the
transformed programs, the live variables always receive the
same values :-))
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Computation of the sets  L*[u] :

(1) Collecting constraints:

X
[ (L[v)) k=(u,_,v) edge

(2) Solving the constraint system by means of RR iteration.
Since L is finite, the iteration will terminate  :-)
(3) Ifthe exitis (formally) reachable from every program

point, then the smallest solution £ of the constraint
system equals £* sinceall [k]* are distributive
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Transformation 2:

r=M [(-.]:

<0 =0

x & L*[v]

& L]

209

=0 =<0



