Script generated by TTT

Title: Seidl: Programmoptimierung (05.11.2015)

Date: Thu Nov 05 08:35:01 CET 2015

Duration: 89:40 min

Pages: 61

... end of background on: Complete Lattices

Final Question

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice $\,\mathbb{D},\,$ consider systems:

$$\begin{array}{ccc} \mathcal{I}[start] & \supseteq & d_0 \\ \\ \mathcal{I}[v] & \supseteq & \llbracket k \rrbracket^{\sharp} \left(\mathcal{I}[u] \right) & & k = (u,_,v) & \text{edge} \end{array}$$

where $d_0 \in \mathbb{D}$ and all $[\![k]\!]^{\sharp}: \mathbb{D} \to \mathbb{D}$ are monotonic ...

→ Monotonic Analysis Framework

Final Question

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice $\,\mathbb{D},\,$ consider systems:

$$\begin{array}{ccc} \mathcal{I}[start] & \supseteq & d_0 \\ \\ \mathcal{I}[v] & \supseteq & \llbracket k \rrbracket^{\sharp} \left(\mathcal{I}[\textcolor{red}{u}] \right) & & k = (\textcolor{red}{u}, \underline{\ \ }, \textcolor{red}{v}) \end{array}) \text{ edge}$$

where $d_0 \in \mathbb{D}$ and all $[\![k]\!]^\sharp : \mathbb{D} \to \mathbb{D}$ are monotonic ...

152

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \left| \begin{array}{c} \left| \{ \llbracket \pi \rrbracket^\sharp \ d_0 \ | \ \pi : start \to^* v \right\} \end{array} \right|$$

... end of background on: Complete Lattices

Final Question

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice $\,\mathbb{D},\,$ consider systems:

$$\begin{array}{ccc} \mathcal{I}[start] & \supseteq & d_0 \\ \\ \mathcal{I}[v] & \supseteq & \llbracket k \rrbracket^{\sharp} \left(\mathcal{I}[\textcolor{red}{u}] \right) & & k = (\textcolor{red}{u}, _, \textcolor{red}{v}) & \text{edge} \end{array}$$

where $d_0 \in \mathbb{D}$ and all $[\![k]\!]^\sharp : \mathbb{D} o \mathbb{D}$ are monotonic ...

→ Monotonic Analysis Framework

153

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \left| \begin{array}{c} \left| \left\{ \llbracket \pi \rrbracket^\sharp \ d_0 \ | \ \pi : start \to^* v \right\} \end{array} \right| \right|$$

Theorem

Kam, Ullman 1975

Assume $\ \mathcal{I}$ is a solution of the constraint system. Then:

$$\mathcal{I}[v] \ \supseteq \ \mathcal{I}^*[v]$$
 for every v

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi
rbracket^\sharp d_0 \mid \pi : \mathit{start} o^* v \}$$

154

Proof: Induction on the length of π .

Proof: Induction on the length of π .

Proof: Induction on the length of π .

Foundation: $\pi = \epsilon$ (empty path)

Then:

 $\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[\underline{start}]$

158

Proof: Induction on the length of π .

Foundation: $\pi = \epsilon$ (empty path)

Then:

$$\llbracket \boldsymbol{\pi} \rrbracket^{\sharp} d_0 = \llbracket \boldsymbol{\epsilon} \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[\boldsymbol{start}]$$

Step: $\pi = \pi'k$ for $k = (\underline{u}, \underline{\hspace{0.1cm}}, \underline{v})$ edge.

Proof: Induction on the length of π .

Foundation: $\pi = \epsilon$ (empty path)

Then:

$$\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[\underline{start}]$$

Step: $\pi = \pi'k$ for $k = (\underline{u}, \underline{\hspace{0.1cm}}, \underline{v})$ edge.

Then:

Disappointment

Are solutions of the constraint system just upper bounds ????

163

Disappointment

Are solutions of the constraint system just upper bounds ????

Answer

In general: yes

With the notable exception when all functions $[k]^{\sharp}$ are distributive ...

Disappointment

Are solutions of the constraint system just upper bounds ????

Answer

In general: yes

Gary A. Kildall (1942-1994).

Has developed the operating system CP/M and GUIs for PCs.

Gary A. Kildall (1942-1994).

Has developed the operating system CP/M and GUIs for PCs.

181

The function $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called

- $\bullet \quad \text{ distributive, if } \quad f\left(\bigsqcup X \right) = \bigsqcup \{ f \: x \mid x \in X \} \text{ for all } \emptyset \neq X \subseteq \mathbb{D};$
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples

• $fx = x \cap a \cup b$ for $a, b \subseteq U$. Strictness: $f\emptyset = a \cap \emptyset \cup b = b = \emptyset$ whenever $b = \emptyset$ The function $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called

- distributive, if $f(\coprod X) = \coprod \{ f \mid x \mid x \in X \}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

166

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, \quad \text{inc } x = x + 1$

```
The function f: \mathbb{D}_1 \to \mathbb{D}_2 is called distributive, if f(U|X) = \bigcup \{fx \mid x \in X\} for all \emptyset \neq X \subseteq \mathbb{D}; strict, if f \perp = \bot.

Contain distributive, if f is distributive and strict.

Examples

Figure 1. Strictness for A is A is A is tributive and strict.

Strictness for A is A is A is A is tributive and strict.

f(x_1 \cup x_2) = a \cap (x_1 \cup x_2) \cup b
= a \cap x_1 \cup a \cap x_2 \cup b
= f(x_1 \cup f(x_2))
```

169

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, \quad \operatorname{inc} x = x + 1$ Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$

$$f(x_n) \cap f(x_n) = (a \cap x_n \cap x_2 \cup b)$$

$$f(x_n) \cap f(x_n) = (a \cap x_n \cup b) \cap (a \cap x_1 \cup b)$$

$$= a \cap x_n \cap x_2 \cup a \cap x_n \cap b \cup b$$

$$a \cap x_n \cap b \cup b$$

$$\begin{array}{lll} \bullet & \mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, & \operatorname{inc} x = x + 1 \\ & \textbf{Strictness:} & f \perp = \operatorname{inc} 0 = 1 & \neq & \perp \\ & \textbf{Distributivity:} & f \left(\bigsqcup X \right) & = & \bigsqcup \{x + 1 \mid x \in X\} & \text{for} \\ & \emptyset \neq X & \end{array}$$

- $\begin{array}{lll} \bullet & \mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, & \operatorname{inc} x = x + 1 \\ & \text{Strictness:} & f \perp = \operatorname{inc} 0 = 1 & \neq & \perp \\ & \text{Distributivity:} & f \left(\bigsqcup X \right) & = & \bigsqcup \{x + 1 \mid x \in X\} & \text{for} \\ & \emptyset \neq X & \end{array}$
- $\mathbb{D}_1 = (\mathbb{N} \cup {\infty})^2$, $\mathbb{D}_2 = \mathbb{N} \cup {\infty}$, $f(x_1, x_2) = x_1 + x_2$

173

Remark

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic.

- $\begin{array}{lll} \bullet & \mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, & \operatorname{inc} x = x + 1 \\ & \text{Strictness:} & f \perp = \operatorname{inc} 0 = 1 & \neq & \perp \\ & \text{Distributivity:} & f \left(\bigsqcup X \right) & = & \bigsqcup \{x + 1 \mid x \in X\} & \text{for} \\ & \emptyset \neq X & \end{array}$
- $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$: Strictness: $f \perp = 0 + 0 = 0$

- $\begin{array}{lll} \bullet & \mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, & \operatorname{inc} x = x + 1 \\ & \text{Strictness:} & f \perp = \operatorname{inc} 0 = 1 & \neq & \perp \\ & \text{Distributivity:} & f \left(\bigsqcup X \right) & = & \bigsqcup \{x + 1 \mid x \in X\} & \text{for} \\ & \emptyset \neq X & \end{array}$
- $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$:

 Strictness: $f \perp = 0 + 0 = 0$ Distributivity: $f((1,4) \sqcup (4,1)) = f(4,4) = 8$ $\neq 5 = f(1,4) \sqcup f(4,1)$

Remark

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic.

176

Remark

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic.

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

Remark

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic.

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

177

Remark

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic.

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

From that follows:

$$\begin{array}{rcl} f \, b & = & f \, (a \sqcup b) \\ & = & f \, a \sqcup f \, b \\ & \Longrightarrow & f \, a \; \sqsubseteq \; f \, b \end{array}$$

Assumption: all v are reachable from start.

Assumption: all v are reachable from start. Then:

Theorem

Kildall 1972

If all effects of edges $[\![k]\!]^\sharp$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v .

180

179

Assumption: all ${\it v}$ are reachable from ${\it start}$. Then:

Theorem

Kildall 1972

If all effects of edges $[\![k]\!]^\sharp$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Proof

It suffices to prove that \mathcal{I}^* is a solution!

For this, we show that \mathcal{I}^* satisfies all constraints.

(1) We prove for *start*:

$$\mathcal{I}^*[start] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* start \}$$

$$\supseteq \llbracket \epsilon \rrbracket^{\sharp} d_0$$

$$\supseteq d_0$$

(1) We prove for *start*:

$$\mathcal{I}^*[start] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* start \}$$

$$\supseteq \llbracket \epsilon \rrbracket^{\sharp} d_0$$

$$\supseteq d_0$$

(2) For every k = (u, v) we prove:

$$\mathcal{I}^*[v] = \bigsqcup\{\llbracket\pi\rrbracket^\sharp d_0 \mid \pi : start \to^* v\}$$

$$\supseteq \bigsqcup\{\llbracket\pi'k\rrbracket^\sharp d_0 \mid \pi' : start \to^* u\}$$

$$= \bigsqcup\{\llbracket k\rrbracket^\sharp (\llbracket\pi'\rrbracket^\sharp d_0) \mid \pi' : start \to^* u\}$$

$$= \llbracket k\rrbracket^\sharp (\bigsqcup\{\llbracket\pi'\rrbracket^\sharp d_0 \mid \pi' : start \to^* u\})$$

$$= \llbracket k\rrbracket^\sharp (\mathcal{I}^*[u])$$

since $\{\pi' \mid \pi' : start \to^* u\}$ is non-empty.

185

Caveat

Reachability of all program points cannot be abandoned! Consider:

Then:

$$\mathcal{I}[2] = \operatorname{inc} 0 = 1$$

$$\mathcal{I}^*[2] = \bigsqcup \emptyset = 0$$

Caveat

Reachability of all program points cannot be abandoned! Consider:

 $\begin{array}{ccc}
\text{inc} & \text{where} & \mathbb{D} = \mathbb{N} \cup \{\infty\}
\end{array}$

Summary and Application

The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

Summary and Application

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

→ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration.

190

1.2 Removing Assignments to Dead Variables

Example:

1: x = y + 2;

2: y = 5;

3: x = y + 3;

The value of x at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable $\ x$ dead at these program points :-)

Summary and Application

The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

- If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration.
- If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP.

191

1.2 Removing Assignments to Dead Variables

Example:

1: x = y + 2;

2: y = 5;

3: x = y + 3;

The value of x at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable $\ x$ dead at these program points :-)

Note:

- → Assignments to dead variables can be removed ;-)
- → Such inefficiencies may originate from other transformations.

193

Note:

- → Assignments to dead variables can be removed ;-)
- $\rightarrow \quad \text{Such inefficiencies may originate from other transformations.}$

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:

if $x \in X$ and π does not contain a definition of x; or:

if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:

- k is a use of x; and
- π_1 does not contain a definition of x.

Note:

- → Assignments to dead variables can be removed ;-)
- → Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:

if $x \in X$ and π does not contain a definition of x; or:

if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:

- k is a use of x; and
- π_1 does not contain a definition of x.

194

Thereby, the set of all defined or used variables at an edge $k = (_, lab, _)$ is defined by:

lab	used	defined
;	Ø	Ø
Pos(e)	$Vars\left(e ight)$	Ø
Neg(e)	$Vars\left(e ight)$	Ø
x = e;	$Vars\left(e ight)$	$\{x\}$
x = M[e];	$Vars\left(e ight)$	$\{x\}$
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$	Ø

A variable x which is not live at u along π (relative to X) is called dead at u along π (relative to X).

Example:

where $X = \emptyset$. Then we observe:

	live	dead
0	$\{y\}$	{ <i>x</i> }
1	Ø	$\{x,y\}$
2	$\{y\}$	{ <i>x</i> }
3	Ø	$\{x,y\}$

196

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

197

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

Idea:

For every edge $k=(u,_,v)$, define a function $[\![k]\!]^\sharp$ which transforms the set of variables which are live at v into the set of variables which are live at v...

Let $\mathbb{L} = 2^{Vars}$.

For $\mathbf{k} = (\ , lab, \)$, define $[\![\mathbf{k}]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$[];]^{\sharp}L = L$$

$$[Pos(e)]^{\sharp} L = [Neg(e)]^{\sharp} L = L \cup Vars(e)$$

$$[x = e;]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[x = M[e];]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[M[e_1] = e_2] \downarrow L = L \cup Vars(e_1) \cup Vars(e_2)$$

200

We verify that these definitions are meaningful :-)

$$x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;$$

1
2
3
5

We verify that these definitions are meaningful :-)

$$x = y + 2;$$
 $y = 5;$ $x = y + 2;$ $M[y] = x;$

202

We verify that these definitions are meaningful :-)

$$x = y + 2;$$
 $y = 5;$ $x = y + 2;$ $M[y] = x;$

1

2

3

4

 $\{y\}$
 $\{x, y\}$

We verify that these definitions are meaningful:-)

207

Transformation 2:

$$x = e;$$

$$x \notin \mathcal{L}^*[v]$$

$$v$$

$$x = M[e];$$

$$x \notin \mathcal{L}^*[v]$$

$$v$$

The set of variables which are live at u then is given by:

$$\mathcal{L}^*[\mathbf{u}] = \left\{ \int \{ \llbracket \pi \rrbracket^{\sharp} X \mid \pi : \mathbf{u} \to^* \mathbf{stop} \} \right\}$$

... literally:

- The paths start in u:-)
 - \implies As partial ordering for \mathbb{L} we use $\sqsubseteq = \subseteq$.
- The set of variables which are live at program exit is given by the set X:-)

208

Correctness Proof:

- Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π , then $[\![\pi]\!]^\sharp L$ is the set of variables which are live at the beginning of π :-)
- → Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live.
 The value of dead variables thus is irrelevant :-)
- → Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\begin{array}{lll} \mathcal{L}[\mathit{stop}] &\supseteq & X \\ \\ \mathcal{L}[\mathit{u}] & \supseteq & \llbracket k \rrbracket^{\sharp} (\mathcal{L}[v]) & & k = (\mathit{u}, _, \mathit{v}) & \mathsf{edge} \end{array}$$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^\sharp$ are distributive :-))

Transformation 2:

209