Script generated by TTT

Title: Seidl: Programmoptimierung (05.02.2014)

Date: Wed Feb 05 08:32:53 CET 2014

Duration: 39:19 min

Pages: 21

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev’ = funa — funl! —

match ! with [] — «

| xoas — rev' (z:a)as

rev = rev' []

comp rev rev = id

swap = funf — funz — funy — fyx
comp swap swap = id

837

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev’ =

rev =

comp rev rev

swap =

comp swap swap =

funa —» funl/ —
match [with [] — «a
| zvas — rev' (v:a) xs

rev’ []

fun f - funz — funy — fy«x

837

@(h-c W(f(&:%(
A (] o

) XS — /jfy‘?((ﬁ@rfyil;

Extension (2): List Reversals
lists or arguments is reversed:

@ es, the ordurmg
mﬁl [w1th — a
v\k £ cxs — rev' (1a) X8
rev] T_%

CJ/

com} ool | KSid — /‘f ne (ﬁceffys-;_\

foldr f a = comp (foldl (swap f) a) rev

Gl e @/(eﬂ(P wsdf (

K/\/JQ a] 5
Discussion: Q.
Y /i
o Th]qtandard 1mg§.munlat10n of foldr is no n.c?{m‘[JCG?(m

e The last equation decomposes a foldr into two tail-recursive
swap = fun f —» funz — funy — fyux
functions — at the price that an intermediate list is created.
e Therefore, the standard implementation is probably faster :-)
comp swap swap = id]) o
e Sometimes, the operation rev can also be optimized away ...
837 LE
We have:

comp rev (map f) comp (map f) rev

comp rev (filter p)

comp (filter p) rev

comp rev (tabulate f) = rev_tabulate f

Here, rev_tabulate tabulates in reverse ordering. This function has
properties quite analogous to tabulate:

comp (map f) (rev_tabulate g) rev_tabulate (comp, f g)

comp (foldl f a) (rev_tabulate g) = rev_loop (comp, f g) a

839

We have:

comp rev (map f) comp (map f) rev

comp rev (filter p) comp (filter p) rev

comp rev (tabulate f) rev_tabulate f

Here, rev_tabulate tabulates in reverse ordering. This function has
properties quite analogous to tabulate:

comp (map f) (rev_tabulate g) = rev_tabulate (comp, f g)
comp (foldl f a) (rev_tabulate g) = rev_loop (comp, [g) a

839

Extension (3): Dependencies on the Index

e Correctness is proven by induction on the lengthes of occurring lists.

e Similar composition results also hold for transformations which take
the current indices into account:

mapi’ = funi — fun f — funl! — match ! with [] — |[]

| zoas — fix)zmap’ (4 1) f s

Analogously, there is index-dependent accumulation:

foldli’ = funi — funf — funa — fun! —
match { with [| — «
| xxs — foldli’ (i+ 1) f (fiax) xs
foldli = foldli" 0

For composition, we must take care that always the same indices are used.

mapi = mapi' 0 This is achieved by:
B4 841
compi = funf — fung — funi — funzx — fi(gi2) Then:
compiy = funf — fung — funi — funz; — funz, —
o comp (mapi f) (map g) = mapi (comp, f g)
fi(gia) . :
comp (map f) (mapi g) = mapi (comp f g)
. , comp (mapi f) (mapi g) = mapi (compi f g)
compi, = funf — fung — funi — funx, — funz, —
‘ , comp (foldli f a) (map g) = foldli (cmp, fg)a
fiax (gix) _ _
comp (foldl f @) (mapi g) = foldli (cmp, f g)a
foldli f ¢ i = foldli i
cmp; = funf — fung — funi — funax — funz, — comp (foldli f @) (mapi 9) oldli {compi, f 9) a
comp (foldli f a) (tabulate g) = leth= funa — funi —

[ia (gag)

cmp, = funf — fung — funi — funz;, - funz —

fay(giag)

842

fialgi)

in loop h a

843

compi = funf — fung — funi — funax — fi(gix) Then:

compiy, = funf — fung — funi —» funx; — funr: —

il mapi (comp, f 9)

mapi (comp f g)

comp (mapi f) (map g)
comp (map f) (mapi g)

comp (mapi mapi ¢ = mapi(compi f ¢
compi, = funf — fung — funi — funx; — funr, — P Pi.f) (mapi g) P Pifa)
‘ , = foldli (cmp, fg)a
fixi(gix)
comp (foldl f a) (mapi g) = foldli (cmp, f g) a

(
(
(
(
(
(

foldli (compi, f g) a

foldli f ¢ i
cmp; = funf — fung — funi — funx;, — funr, — comp (foldli f a) (mapi 9)

(
(
(
comp (foldli f a) (map g)
(
(
(

let h= funa — funi: —

fialgi)

in loop ha

comp (foldli f a) (tabulate g)

fix (gmx)

cmp, = funf — fung — funi — funx;, — funr, —
faxy(gix)
842 843
Discussion: Discussion:
e Warning: index-dependent transformations may not commute e Warning: index-dependent transformations may not commute
with rev or filter. with rev or filter.
e All our rules can only be applied if the functions id, map, mapi, e All our rules can only be applied if the functions id, map, mapi,

foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ... are
provided by a standard library: Only then the algebraic properties
can be guaranteed !!!

Similar simplification rules can be derived for any kind of tree-like
data-structure tree cv.

These also provide operations map, mapi and foldl, foldli with

corresponding rules.

Further opportunities are opened up by functions to_list and
from_list ...

844

foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ... are
provided by a standard library: Only then the algebraic properties
can be guaranteed !!!

Similar simplification rules can be derived for any kind of tree-like
data-structure tree av.

These also provide operations map, mapi and foldl, foldli with

corresponding rules.

Further opportunities are opened up by functions to_list and
from_list ...

844

Example Example

type tree « = Leaf | Node « (tree av) (tree o) typetree @ = Leaf | Node o (tree o) (tree «)
map = fun f — funt — match ¢t with Leaf — Leaf map = fun f — funt — match ¢ with Leaf — Leaf
| —
|| Node z [r |— let I :l map f1 I | Nodex!r — let I/ = mapfl
r' = |map fr ¥ = mapfr
in Nodel(f:r: I in Node (fux)l' ¢
foldl = fun f - funa — funt — match ¢ with Leaf — « foldl = fun f - funae — funt — match ¢ with Leaf — «
| Node zlr — let o =foldl fal | Node x: i+ — let o' =|foldl f al
in foldl f (fa' x)r infoldl f (fa' x)r
845 845
Warning:
to_list’ = fune — funt — match { with Leaf — a
| Nodexiit, — let o = to_list'al, Not every natural equation is valid:

in to_list' (x::a')
to_list = to_list' [] comp to_list from_list = id
id
comp (map f) to_list

He

comp from_list to_list

comp to_list (map f)

from_list = fun/ — match! comp from_list (map f) = comp (map f) from_list
with [] — Leaf comp (foldl fa)to list = foldl fa
| x:as — Node x Leaf (from_list x:5) comp (foldl f @) from_list = foldl f a

846 847

In this case, there is even a rev:

rev = funt —
match ¢ with Leaf — Leaf
| Nodexi ty — let s, = revi,
Sy = revis

in Node z 55 51

comp to_list rev = comp rev to_list

comp from_list rev # comp rev from_list

848

4.6 CBN vs. CBV: Strictness Analysis
Problem:

¢ Programming languages such as Haskell evaluate expressions for
let-defined variables and actual parameters not before their values
are accessed.

e This allows for an elegant treatment of (possibly) infinite lists of
which only small initial segments are required for computing the
result :-)

e Delaying evaluation by default incures, though, a non-trivial
overhead ...

849

