Script generated by TTT

Title: Seidl: Programmoptimierung (03.02.2014)
Date: Mon Feb 03 14:15:29 CET 2014
Duration: 91:03 min

Pages: 60

e int-values returned by operators are described by the unevaluated
expression;
Operator applications might return Boolean values or other basic
values. Therefore, we do replace tests for basic values by
non-deterministic choice ...

e Assume ¢ =matche;, withp, = e;|...|pr = €.
Then we generate for p; = b (basic value),

[e]f 2 [e] : 0

If p;=(y,...,y) and wv=(e},...,e}) isavalue, then

If p; =y,then

-
=
5

a— b
Example The append-Function

Consider the concatenation of two ligts=In Ocaml, we would write:

atch r with

[] —=|funy — y |

funy — h:appty
e A

let recapp = funxz —

in app [1;2] [3]

The analysis then results in:

app]*
:f:]]j

match.. [} =
v

[
[
[
[

Example The append-Function

K]t = {12}

Consider the concatenation of two lists. In Ocaml, we would write: [
let rec app = fun z It1¢ = {2}
[app t]* =
_ [app [L; 2] = {funy — y,funy — h:app...}
in app [1;2] lappt y]* =
The analysis then results in: lapp [L:2][3]]* = {[3].h:app...}
[app]? = {funz — match...}
Values cey...en, (€1,...,€,) oroperator applications ¢ Oe.
[« = {1212, [) nte comsive calls eleilt. . Toule, (TerlF. .. Teal?
. now are interpreted as recursive calls ¢ [er]*. .. [ex]?, ([ed]f, .- -, [ex]™)
[match...]* = {funy — y,funy — h:z=app...} or [ed]'Ofez]", respectively.
[v] =({3}
— regular ree gramimear
798 799
Example The append-Function
Consider the concatenation of two lists aml, we would write: [[h]j _ {13 2}
let rec app = fun 2z — /match = with 1] = {[2,}
] — funy — y [app 1]* =
h=t — funy — h:appty Japp [1; 2] = {funy — y,funy — h:app...}
in app [1;2] [3] [=
The analysis then results in: [= {[8.h:zapp...}
[app]? = {funz — match...}
Values cey...ep, (eq,..., ;) oroperator applications ¢, Oe.
[+ = {12210} interoreted as rewursive calls e T T . Toxlf. (TerTFe . Ton]d
) now are interpreted as recursive calls ¢ [Jea]*. .. [ex]?, ([ed]F, - - [ex]®)
[match...]* = {$uny — y,funy — h=app...} or [ex]!Ofes]?, respectively.
[y = {1}

798

— regulzu‘ ree grammar

79

Example The append-Function

Consider the concatenation of two lists. In Ocaml, we would write:

let rec app = fun r — match x with
[] — funy — y
|h:t — funy — h:appty
in app [1;2] [3]

The analysis then results in:

app]* = {funz — match...

app [1; 2] by, funy — happ.}.

lapp [1; 2] [3]]

[
[]} — (2.2 Values cey...ep, (€1,...,€,) oroperator applications e 0ey
now are interpreted as recursive calls ¢ [e1]?. .. [ex]", (Jei], ..., lex]®)
[match..] = {fur:;ﬁ}un y _> or [ei]*O]e2]?, respectively.
[v]F = {[3]
— l‘egulzu‘ ree gramimear
798 799
.. in the Example: -
[h]? = {12}
We obtain for A = [Jappty]*: Gk = {2}
[app 1]* =
A = 3] [\[A]f=A Japp [1; 2] = {funy — y,funy — h:app...}
[P — 1 | 2 lapp t]! —
lapp [L:2] [8]]* = {[3].huapp...}
Let £(¢) denote the set of terms derivable from [¢]* w.r.t. the regular tree
grammar. Thus, e.g., Values cep...ep, (€1,..., ;) oroperator applications ¢, Oey
now are interpreted as recursive calls ¢ [ei]?. . [en]’, (Jei]%, - -, [er]®)

L(h) {1.2}
Llappty) = {lm;:....q:3] | r > 0,0 € {1,2}}

8O0

or [ei]*O[ez]?, respectively.

— regulzu‘ ree grammar

43 An Operational Semantics

Idea:

‘We construct a Big-Step operational semantics which evaluates
expressions w.r.t. an environment :-)

Values are of the form:
va=b|ecvi...ep | (v1,.. .,) | (funz — e,n)
Examples for Values:
cl
2] =21 (2 2))
(funz — xzy, {y — [B]})

801

Function Application:

(e1,n) = (funz — e,)
(€2,m) = vy

(e, @ {x — 12}) = v3

(e1 e9,1) = 13

B4

Case Distinction 2:

(e,n) = cuy...u4

(e, ® {21 > v1,.. ., Z o U)) = v

(match e withp, — e | ... |pr = e,) = v

if p,=cz ...z isthe first pattern which matches cuv; ..

806

. ’b‘k

-)

4.4 Application: Inlining

Problem:

e global variables. The program:

let af=1
inlet f= let ©=2

in funy — y+4ux

in [

A

811

lr

3

... computes something else than:

let z=1
inlet f

let

in

=2

funy —» y+ =

let y==z
in y+zx

e recursive functions. In the definition:

foo =

foo should better not be substituted

812

Idea 1:

> First, we introduce unique variable names.

> Then, we only substitute functions which are staticly within the
scope of the same global variables as the application :-)

» For every expression, we determine all function definitions with
this property :-)

813

4.4 Application: Inlining

Problem:

e global variables. The program:

let /I':l

inlet f= let
in

in [z

811

x= 2

funy — y+=z
T

Idea 1:

» First, we introduce unique variable names.

+ Then, we only substitute functions which are staticly within the
scope of the same global variables as the application :-)

> For every expression, we determine all function definitions with
this property ~ :-)

813

44 Application: Inlining
Problem:

e global variables. The program:

let z=1

inlet f= let e

in funy — y
in m
-

811

Idea 1:

> First, we introduce unique variable names.

> Then, we only substitute functions which are staticly within the
scope of the same global variables as the application :-)

» For every expression, we determine all function definitions with
this property :-)

813

Let)= Dle] denote the set of definitions which staticly arrive at

ee If ¢ = letx; =¢ ine; then:
D [(1} = D
,-) Dlen] = DU {z}
ee If ¢ = funz — e; then

i[—][(1]

ee Similarly, for ¢ = match.. . €

814

€.

In all other cases, /) is propagated to the sub-expressions unchanged

-)

... In the Example:

let r=1
inlet f=Net z =2
in funy — y+

in fr

... the application f x is not in the scope of =,

——> we first duplicate the definition of x; :

813

let x=1
inlet », =2
inlet f= let 2,=2
in funy — y+

in [

—

—— the inner definition becomes redundant !!!

816

let r=1
inlet », =2
inlet f= let =, =2
in funy — y+ 1

in [

the inner definition becomes redundant !!!

816

let =1
inlet =, =2

inlet f=funy — y+ 1y

Removing variable-variable-assignments, we arrive at:

B8

in Jet =funy — y+

|:r' +axy

819

[dea 2:

> We apply our value analysis.
> Weignore global variables :-)

> We only substitute functions without free variables :-))

Example: The map-Function

letrec f=funzr — =-z
and map=fung — funx — match x
with [] — []
| LTS — grimapgrs

in map f list

820

Idea 2:

> We apply our value analysis.
> Weignore global variables :-)

> We only substitute functions without free variables :-))

820

e The actual parameter f in the application map g is always
funz — z-x)

o Therefore, map g can be specialized to a new function h
defined by:

h = letg=|funas — =z«
in fun x — match z
with [] — [

\ rnxs — gux | map g|as

821

[dea 2:

> We apply our value analysis.
> Weignore global variables :-)

> We only substitute functions without free variables :-))

Example: The map-Function

let rec f
and map=fung — fapzr — match
with [] —
| rirs — grimapgars

in map f list

820

The actual parameter f in the application map g is always

funr — x-x)

Therefore, map g can be specialized to a new function
defined by:

h = letg=|funx — x -z
in fun © — match =
with [] — []

| ruxs — gx o map g|as

h

Idea 2:

> We apply our value analysis.
> Weignore global variables :-)

> We only substitute functions without free variables :-))

Example: The map-Function

letrec f=funz — = -z
and map=fung — funzr — match x
with [|] — []
| TS — grimapgas

in map f list

820

The actual parameter f in the application map g is always

funz — z-x)

Therefore, map g can be specialized to a new function
defined by:

letg=|funz — x-x
in fun x — match =
with [] — [
\ riws — g map glas
T

821

h

The inner occurrence of map g can be replaced with h

—— fold-Transformation :-)

h = letg=funzr — = -x
in fun z — match x
with [] — []

| xriirs — g h rs

822

Inlining the function ¢ yields:

h = letg=funz — z-x
in funxr — matchx
with [] — []
| rixs — (letx=x

in xxx) =hurs

Removing useless definitions and variable-variable assignments yields:

h = funa — match x
with [] — []

Tirs — TRI h xrs

824

Removing useless definitions and variable-variable assignments yields:

h = funx — match =z
with [] — []

| xurs — x*x i haxs

824

Deforestation

=
n

Functional programmers love to collect intermediate results in lists
which are processed by higher-order functions.

e Examples of such higher-order functions are:

map = fun f — fun! — match! with[] — []

| xuxs — fa:map fs)

id = funz — =z

filter = funp — fun! — match! with [] — []
| zixs — if pa then x :: filter p xs comp = fun [— fung — funz — f (g 1)
else filter p zs)
comp, = fun f — fung — funz; — funz, —
[(g x) s
foldl = funf — funa — fun! — match!with[] — «
comp, = fun f — fung — funz; — funz, —
| zzws — foldl f (fax) xs)
[y (g)
826 827
Example:
Observations:
sum = foldl (+) 0
length = let f = map (funz — 1) Explicit recursion does no longer occur!
in comp sum f The implementation creates unnecessary intermediate
dev = fun! — let s = suml data-structures!
n = length []
length could also be implemented as:
mean = si/n
I — map (funz — x — mean) | length = let f = funae — funz — a+1
ly = map (funz = x-x) [in foldl f 0
So = sumls

in s2/n

828

This implementation avoids to create intermediate lists !!!

829

Example:

sum = foldl (+) 0
length = let f = map (funxz —1)
in comp sum f

dev = funl! — let s; = suml
n = length [
mean = s;/n
Iy = map (fun x — x — mean) [
I = map (funz - x-z) [
S92 = sumls

in ss/n

Observations:

e Explicit recursion does no longer occur!

¢ The implementation creates unnecessary intermediate

data-structures!

length could also be implemented as:

length = let f

funa — funxr — a+1

in foldl f 0

e This implementation avoids to create intermediate lists !!!

828 829
Simplification Rules: Simplification Rules:
compid f = compfid = f compid f = compfid = f
comp, fid = comp, fid = f comp, fid = comp, fid = f
map id - i map id = id
comp (map f) (mapg) = map(comp f g)

comp (foldl f a) (map g) = foldl (comp, f g)a

B30

comp (map f) (map g)
comp (foldl f a) (map g)

comp (filter py) (filter p2)

comp (foldl f a) (filter p)

map (comp f g)
foldl (comp, f g) a
filter (funz — if pox then p; a
else false)
let h =funa — funx — if px then fax
else a

in foldl / a

831

Warning:

Function compositions also could occur as nested function calls ...

id z

map id [

map f (map g {)
foldl f a (map g)
filter py (filter pa 1)
foldl f a (filter p)

xr

{

map (comp [g) |
foldl (comp, fg)al

filter (funx — prx Apox)l

let h =funa — fun x — if pax then fax

else a
in foldl hal

832

Simplification Rules:

compid f x =
comp, fid =
map id =
(comymap 7(map 9)) =
comp (foldl f a) (map g) =
comp (filter py) (filter pa) =

comp (foldl f a) (filter p)

U ()= £
£«

comp fid x= f
comp, fid = f
id

map (comp f g)
foldl (comp, [g) a
filter (funz — if pox then p; x
else false)
let h=funa — funx — if px then fax
else a

in foldl h a

831

Warning:

Function compositions also could occur as nested function calls ...

id

map id {

map f (map g)
foldl f a (map g [)
filter py (filter po 1)
foldl f a (filter p {)

x

l

map (comp [g) |

foldl (comp, fg)al

filter (funx — pyx Apox)l

let h =funa — fun » — if pax then fax

else a
in foldl hal

832

Example, optimized:

sum = foldl (+) 0
length = let f = comp, (+) (funz — 1)
in foldl f0

dev = fun! — let s = suml
n = length!
mean = si1/n
! = comp (funz — z-x)

(fun x — x — mean)

g = comp, (+) f
S = foldlg 01

in sa/n

833

Example, optimized:

Example:
sum = foldl (+) 0
sum =
length = let f = comp, (+) (funz — 1) et
ength =
in foldl f0O & .)
1n comp st
dev = funl! — let s = sum/ P
length 1 dev = funl! — let s = sum/
n = len
n = length [
mean = si/n /g
mean = s;/n
i = comp (funz — x-2z) '
(fun 2 — = — mean) Iy = map (funxr — x — mean) [
) — compy (4) f - J Iy = map (funx — x-x) [}
- 2
3; = sum :
sy = foldl g0l ! :
in s»/n i s /n
B33 828
Example, optimized:
Remarks:
sum = foldl (+) 0
length let / (4) (B 1) e Allintermediate lists have disappeared :-)
en = le = comp, un &
in foldl f0 e Only foldl remain — i.e., loops :-))
dev — fun! — let s — wuml e Compositions of functions can be further simplified in the next step
B ' o B Iengti1 i by Inlining.
n =
/ e Inside dev, we then obtain:
mean = Si1/n
f = comp (funz—z-7) g = funa — funz — let #; = xr — mean
(fun r — & — mean)
ro = X1-T1
9 = comp (+) f in a+as
S = foldlg 0!
. y e The result is a sequence of let-definitions !!!
in sa/n

833

834

Extension: Tabulation

If the list has been created by tabulation of a function, the creation of the
list sometimes can be avoided ...

tabulate’ = funj — fun f — funn —

if j > n then []

else (f j) :: tabulate’ (j +1) fn
tabulate = tabulate’ 0

« L N
ok D (ot qu—nq— > a &t
(O o =)Dt la Ly

835

Then we have:

comp (map f) (tabulate g) = tabulate (comp [g)

comp (foldl f a) (tabulate g) = loop (comp, f g)
where:

loop = funj - funf — funa — funn —

loop = loop’ 0

if j > nthena
else loop’ (7 +1) f(faj))n

836

Then we have:

comp (map f) (tabulate g) = tabulate (comp [g)

comp (foldl f a) (tabulate ¢) = loop (comp, f ¢) a

where:

loop = funj —» funf — funa — funn —

if j > nthen a

else loop’ (7 +1) f (faj))n
loop = loop’ 0

836

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev’

rev

comp rev rev

swap

comp swap swap

funa — funl! —

rev’ []

match ! with [] — «

| xuxs = rev' (z:a) s

fun f —- funz — funy — fyx

837

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev’ = funa — funl —

match [with [] — «
| zoas — rev' (z:a)xs

rev = rev' []

id

comp rev rev

swap = fun f —» funz — funy — fyux

comp swap swap = id

837

