Script generated by TTT

34 Wrap-Up

We have considered various optimizations for improving hardware

Title: Seidl: Programmoptimierung (29.01.2014) utilization.
Date: Wed Jan 29 08:40:13 CET 2014 Arrangement of the Optimizations:
. . e First, global restructuring of procedures/functions and of loops for
Duration: 80:47 min & Tneetp P
better memory behavior ;-)
. e Then local restructuring for better utilization of the instruction set
Pages: 27) ,
and the processor parallelism :-)
e Then register allocation and finally,
e Peephole optimization for the final kick ...
782
Procedures: Tail Recursion + Inlining
Stack Allocation
Loops: Tteration Reordering 4 Optimization of Functional Programs
» if-Distribution
» for-Distribution Example:
Value Caching
Bodies: Life-Range Splitting (SSA) let rec facx = if x <1 then 1

Instruction Selection
Instruction Scheduling with
> Loop Unrolling
> Loop Fusion

Instructions: | Register Allocation

Peephole Optimization

else r-fac(xr—1)

e There are no basic blocks :-(
e There are noloops :~(

e Virtually all functions are recursive :-((

4 Optimization of Functional Programs

Example:

let rec facx = if # <1 then 1

else x-fac(x—1)

e There are no basic blocks :-(
e There are no loops :-(

e Virtually all functions are recursive :-((

4 Optimization of Functional Programs

Example:

letrec facax = if <1 then 1

else z-fac (v —1)

e There are no basic blocks :-(
e There are noloops :-(

e Virtually all functions are recursive :-((

Strategies for Optimization:

== Improve specific inefficiencies such as:

e Pattern matching

e Lazy evaluation (if supported :-)

e Indirections — Unboxing / Escape Analysis

o Intermediate data-structures — Deforestation
== Detect and/or generate loops with basic blocks :-)

e Tail recursion

e Inlining

o let-Floating

Then apply general optimization techniques

... e.g., by translation into C :-)

M{@Q. 0y 07,05 L~¢5
H@u%j} L J(Ty, :m)%
.

\ Do

Strategies for Optimization:

——> Improve specific inefficiencies such as:

e Pattern matching

e Lazy evaluation (if supported :-)

e Indirections — Unboxing / Escape Analysis

e Intermediate data-structures — Deforestation
== Detect and/or generate loops with basic blocks :-)

e Tail recursion

e Inlining

e let-Floating

Then apply general optimization techniques

... e.g., by translation into C ;-)

Strategies for Optimization:

—— Improve specific inefficiencies such as:

e Pattern matching

e Lazy evaluation (if supported :-)

e Indirections — Unboxing / Escape Analysis

e Intermediate data-structures — Deforestation
——> Detect and/or generate loops with basic blocks :-)

e Tail recursion

e Inlining

e let-Floating

Then apply general optimization techniques

... e.g., by translation into C :-)

Warning:

Novel analysis techniques are needed to collect information about
functional programs.

Example: Inlining
let max (z,y) = if x>y then x
else y
let abs = = max (z,—2)

As result of the optimization we expect ...

let max (x,y) = if = >y then x
else y
let abs z = let ===z
inlet y=-—z
in if x>y then z
else y
Discussion:

For the beginning, max is just a name. We must find out which value it

takes at run-time

= Value Analysis required !

—
=
=3

Warning:

Novel analysis techniques are needed to collect information about
functional programs.

Example: Inlining
let max (x,y) = if = >y then =z
else y
let abs = = max (z,—2z)

As result of the optimization we expect ...

Warning:

Novel analysis techniques are needed to collect information about
functional programs.

Example: Inlining
let max (x,y) = if x>y then =
else y
let abs z = max (z,—2)

As result of the optimization we expect ...

786 786
let max (x,y) = if x>y then =z
else y
let abs z = let ===z
inlet y=-—z2
in if r>y then x

else y

Discussion:

For the beginning, max is just a name. We must find out which value it
takes at run-time

——> Value Analysis required !!

87

Nevin Heintze in the Australian team
of the Prolog-Programming-Contest, 1998

T8E

The complete picture:

789

4.1 A Simple Functional Language

For simplicity, we consider:

e == b|(e,....,ex)
| (ereq) | (O €) | (e10zeq) |

let ©1 = e ineg |

cep...e | funz —e

match ey with py — e | ... | pr — e
p o= bleler . oxp | (2, 2)
t = letrecri=e¢;and...and 1, =¢; ine

where b isaconstant, x isa variable, ¢ is a (data-)constructor
and 0O; are i-ary operators.

790

Discussion:

e let rec only occurs on top-level.
e Functions are always unary. Instead, there are explicit tuples :-)

o if-expressions and case distinction in function definitions is reduced
to match-expressions.

s In case distinctions, we allow just simple patterns.
——> Complex patterns must be decomposed ...
e let-definitions correspond to basic blocks :-)

e Type-annotations at variables, patterns or expressions could provide
further useful information
— which we ignore :-)

791

4.1 A Simple Functional Language

For simplicity, we consider:

e = b|(ey,...,ep) |cep . ey | fune — e
| (fﬁl fﬁg) ‘ (Dl f;‘) | (fﬁl D2 652) ‘

let x1 = e ineg |

match eg withpy — e, | ... | pr — e
p o= blalery . omp | (2. 1)
t = letrecr; =e;and...and xrp =ep ine

where b isaconstant, x isa variable, ¢ isa (data-)constructor
and O; are i-ary operators.

T

Discussion:

e let rec only occurs on top-level.
e Functions are always unary. Instead, there are explicit tuples :-)

e if-expressions and case distinction in function definitions is reduced
to match-expressions.

e In case distinctions, we allow just simple patterns.
——= Complex patterns must be decomposed ...
e let-definitions correspond to basic blocks :-)

e Type-annotations at variables, patterns or expressions could provide
further useful information
— which we ignore :-)

791

... in the Example:

A definition of max may look as follows:

let max = fun @ —+ match x with (x;,19) — (
match x, < 29
with True = 24

| False —» =

792

Discussion:

e let rec only occurs on top-level.
e Functions are always unary. Instead, there are explicit tuples :-)

e if-expressions and case distinction in function definitions is reduced
to match-expressions.

e In case distinctions, we allow just simple patterns.
——> Complex patterns must be decomposed ...
e let-definitions correspond to basic blocks :-)

e Type-annotations at variables, patterns or expressions could provide
further useful information
— which we ignore :-)

791

Nevin Heintze in the Australian team
of the Prolog-Programming-Contest, 1998

T8E

Accordingly, we have for abs:

let abs = funz — let z = (z,—x)

in max z

4.2 A Simple Value Analysis

Idea:

For every subexpression ¢ we collect the set [¢]* of possible

values of e ..

Let V' denote the set of occurring (classes of) constants, functions as
well as applications of constructors and operators. As our lattice, we

choose:
V=2
As usual, we put up a constraint system:

e If ¢ isavalue,ie.,of the form: b ce;...ex, (e1,...,ex), an
nerate the

[«]

operator application or funxz

constraint:
[]F 2

e If c=(cf:) and f=fund
[} 2 (fela])?[€] : 0
(f €[] ? [l < 0

— ¢, then

—_

=4
T

I

e If e=letux; = e in e, then we generate:

[1]* [ea]*
[e]? leo]*

{ = letrec % % iff e

[«f 2 [l
[1* [eal®

o

e Analogously for

I

e int-values returned by operators are described by the unevaluated
expression;
Operator applications might return Boolean values or other basic
values. Therefore, we do replace tests for basic values by
non-deterministic choice ...

e Assume ¢ =matcheywithp, — e |...|pp — €.
Then we generate for p; = b (basic value),

[e]F 2 [;

