Script generated by TTT

Title: Seidl: Programmoptimierung (27.01.2014)
Date: Mon Jan 27 14:15:21 CET 2014
Duration: 99:45 min

Pages: 49

Presburger Arithmetic

Arithmetic

— full arithmetic

without multiplication

highly undecidable :-(

even incomplete :-((

Hilbert’s 10th Problem

Godel’s Theorem

728

Presburger Arithmetic

Arithmetic

_

—

— full arithmetic

without multiplication

highly undecidable :-(

even incomplete :-((

Hilbert’s 10th Problem

Godel’s Theorem

£

Presburger Formulas over N:

V4

Presburger Formulas over N:

o) = x4y=z | x=n | o) = rxty=z | r=n |
PG | g | B A o - |
dx: ¢ Jx: o
P o .
X(06 _— 3 7 Y +Z g, Goal: PSAT
— —
Find values for the free variables in Y such that ¢ holds ...
729 730
Idea: Code the values of the variables as Words :-) Idea: Code the values of the variables as Words :-)
213t tloft]ofifjoffi|1|@ 23t LjOof1jojrjoftrjt
42 z O1110(1{Olf1O]0|O 42 z Oj1(0]J1]OJ1[0O]O0O
89 y 11OJO[T1j]O||1]0O|B 89 y 110jOf1]1]0O0]1(0
17 X L{OJOJO[IjjO]I0]0p 17 X 110jJOJO]1]O]O(O0O
04 L

Observation:
The set of satisfying variable assignments is regular =)
1 N D —_— L{(p1) N L(da) (Intersection)

(Complement)

(Projection)

742

A A
[40o]0]
o 4Jo[

O
Warning: | o

e QOur representation of numbers is not unique: 011101 should be
accepted iff every word from 011101 - 0* is accepted!

e This property is preserved by union, intersection and complement
)

e Itis lost by projection !!!

= The automaton for projection must be enriched such that the
property is re-established !!

745

Automata for Basic Predicates:

x=23

Automata for Basic Predicates:

xtx =1y

01

~
B
pa

Automata for Basic Predicates:

000
011

Automata for Basic Predicates:

X+y =z
110
000 111
011 o 010
101 100
001
748

Automata for Basic Predicates: \L

xtx=y

NN
\

-
s
b

Projecting away the x-component:

213 t L{Of1)Of1])Of1]1
42 z Oj1rjof1rjo|1j01]o0
89 y 1(0{0O|1[1]0O[1]0
17 X 1(0{0|J0O[1]0[|0]|0

743

3.3 Improving the Memory Layout
Results:
Goal:
Ferrante, Rackoff, 1973 : PSAT < DSPACE(2*™) e Better utilization of caches
= reduction of the number of cache misses
. e Reduction of allocation/de-allocation costs
Fischer, Rabin, 1974 : PSAT > NTIME(2%™")) .)
)) = replacing heap allocation by stack allocation
= support to free superfluous heap objects
e Reduction of access costs
= short-circuiting indirection chains (Unboxing)
750 751
I. Cache Optimization: I. Cache Optimization:
Idea: local memory access Idea: local memory access
e Loading from memory fetches not just one byte but fills a complete ¢ Loading from memory fetches not just one byte but fills a complete
cache line. cache line.
e Access to neighbored cells become cheaper. e Access to neighbored cells become cheaper.
e If all data of an inner loop fits into the cache, the iteration becomes e If all data of an inner loop fits into the cache, the iteration becomes
maximally memory-efficient ... maximally memory-efficient ...

Possible Solutions:

> Reorganize the data accesses !

> Reorganize the data !

Possible Solutions: A

W

» Reorganize the data accesses ! 2

> Reorganize the data !

Such optimizations can be made fully automatic only for arrays :-(Such optimizations can be made fully automatic only for arrays :-(
Example: Example:

for (=14 <n;j++) for (j=1,7<n;j++)

for (i =1;i < m;it+) for (i =10 < m;i++)
alil[j] = alt = 1[j — 1] + ali][j]; ali][j] = ali = 1][7 = 1] + a[#][7];
753 153
Iteration Scheme: before:

— At first, always iterate over the rows! .
— Exchange the ordering of the iterations: d

for (i=1;¢ < m;i++)
for (j=1;5 <n;j++)

alil[j] = ali = 1][j = 1] + ali][j];

When is this permitted???

Vi
P

D
i —

[teration Scheme: after: [teration Scheme: allowed dependencies:

\\\\\ \L
—

756 157

In our case, we must check that the following equation systems have no

solution:
— At first, always iterate over the rows!
— Exchange the ordering of the iterations: Write Read
(i.j1) = (iz2—Lj2—1)
for (i=1;¢ < m;i++) g = iz
for (j =114 <nij++) B2 S I
alillj] = ali = 1)[j — 1] + alil[j): i) = (a=Lr-1
ip = i1
= J2
When is this permitted???
The first implies: Jo<ja—1 Hurra!
The second implies: i < dg — 1 Hurra!

754 758

—_— At first, always iterate over the rows!

= Exchange the ordering of the iterations:

for (i=1;i < myit++)
for (j =15 <n;j++)

ali][j] = ali — 1][7 — 1] + a[i][7];

When is this permitted???

Example: Matrix-Matrix Multiplication

for (i=0;i < N;i++)
for (j =0;7< M;j++)
for (k= 0k < K;k++)
cli] 5] = elills] + ald][k] - b[E][5];

Over b[][] the iteration is columnwise :~(

754 759
Exchange the two inner loops:
for (i =0;i < Nji++)]|’J 314
for (k=0k < K; k++) \
for (j}=0;7 < Mij++) N o (_)'
c[z‘@: (:[2 h[k-@: t[2]3]4][1]4]9]16

Is this permitted 777

Exchange the two inner loops:

for (i =0;i < N;i++)

for (k =0k < K;k++)
for (j =0:j < M:j++)

c[i]lj] = cl)lj] + als] (k] - BIK][H];

Is this permitted 777

Discussion:

e Correctness follows as before :-)

e A similar idea can also be used for the implementation of
multiplication for row compressed matrices :-))

e Sometimes, the program must be massaged such that the
transformation becomes applicable :-(

e Matrix-matrix multiplication perhaps requires initialization of the
result matrix first ...

1\2

1\4\9\16

Discussion:

e Correctness follows as before :-)

e A similar idea can also be used for the implementation of
multiplication for row compressed matrices :-))

e Sometimes, the program must be massaged such that the
transformation becomes applicable :-(

e Matrix-matrix multiplication perhaps requires initialization of the
result matrix first ...

763

for (¢ =0;
for (j=0;7<M;j++)

=0k < K k++4)
cli)[j] = e[]][5] + ale][K] - b[K][3];

e Now, the two iterations can no longer be exchanged :-(

e The iteration over j, however, can be duplicated ...

for (i=0;i<Niit+) {
for (j=0;,7< M;j+ @
for (j =0;7< M;j++)

for (k=0;k
ci][7] = cli][1] + alé][k] - b[k] T

Correctness:

——= The read entries (here: no) may not be modified in the
remaining body of the loop !!!
——= The ordering of the write accesses to a memory cell may not be

changed :-)

765

‘We obtain:

for (1 =0;i < N;i++) {
for (j=0;7<M;j++) c[i][j] =0;
for (k=0;k < K;k++)
for (1 =07 < M:j++)
cli][j] = cle][7] + ald][k] - bE][1];

Discussion:

e Instead of fusing several loops, we now have distributed the loops

)
e Accordingly, conditionals may be moved out of the loop
if-distribution ...

Warning:

Instead of using this transformation, the inner loop could also be

optimized as follows:

for (i =0;i < N;it++)
for (j=0;j < M;j++) {
t =0,
for (k=0;k < K;k++)
t =1+ ald[k] - b[E][7];
clil[j] = t:

—
S
3

‘We obtain:

for (1 =0;i < Nji++) {
for (7 =05 < M;j++) c[i][j]] =0
for (k=0;k < K: k++)
for (1 =0;5 < M;j++)

cli]lj] = eli)lj] + ala][k] - bIK][H);

Discussion:

Instead of fusing several loops, we now have distributed the loops

-)

Warning:

Instead of using this transformation, the inner loop could also be
optimized as follows:

for (i =0;i < N;i++)
for (j=0;j < M:j++) {
t=0;
for (k=0;k < K;k++)
t =t + ald][k] - bIK][7];
bl =t

e Accordingly, conditionals may be moved out of the loop —— 1
if-distribution ...
766 767
)) Alternative:
Discussion:
e so far, the optimizations are concemned with iterations over arrays.
e Cache-aware organization of other data-structures is possible, but in ' BEENEREN
general not fully automatic ...
Advantage:
Example: Stacks
The implementation is also simple :-)
[1]

The operations push / pop still require constant time :-)

The data are consequtively allocated; stack oscillations are typically
small

—

—_— better Cache behavior !!!

-
a3

2. Stack Allocation instead of Heap Allocation

Problem:

e Programming languages such as Java allocate all data-structures in
the heap — even if they are only used within the current method
=(

e If no reference to these data survives the call, we want to allocate

these on the stack :-)

— Escape Analysis

Idea:

Determine points-to information.

Determine if a created object is possibly reachable from the out side ...

Example: Our Pointer Language

... could be a possible method body :-)

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such as ret; or

e are reachable from global variables.

... in the Example:

x = new()
y = new()
z[Al =y,
z=1;

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such as ret; or

e are reachable from global variables.

... in the Example:

r = new()
y = new()
x[A] = y;

Extension: Procedures

We require an interprocedural points-to analysis :-)

We know the whole program, we can, e.g., merge the control-flow
graphs of all procedures into one and compute the points-to
information for this.

Warning: If we always use the same global variables 4, vs,. ..
for (the simulation of) parameter passing, the computed information
is necessarily imprecise :-(

If the whole program is not known, we must assume that each
reference which is known to a procedure escapes :-((

Extension: Procedures

‘We require an interprocedural points-to analysis :-)

‘We know the whole program, we can, e.g., merge the control-flow
graphs of all procedures into one and compute the points-to
information for this.

Warning: If we always use the same global variables 1y, o, . ..
for (the simulation of) parameter passing, the computed information
is necessarily imprecise :-(

If the whole program is not known, we must assume that each
reference which is known to a procedure escapes :-((

