Script generated by TTT

Title: Seidl: Programmoptimierung (22.01.2014)

Date: Wed Jan 22 08:30:56 CET 2014

Duration: 89:46 min

Pages: 58

Background 5: Presburger Arithmetic

Many problems in computer science can be formulated without multiplication :-)

Let us first consider two simple special cases ...

1. Linear Equations

Discussion:

• Integer Linear Programming (ILP) can decide satisfiability of a finite set of equations/inequations over \mathbb{Z} of the form:

$$\sum_{i=1}^{n} a_i \cdot x_i = b \quad \text{bzw.} \quad \sum_{i=1}^{n} a_i \cdot x_i \ge b \;, \quad a_i \in \mathbb{Z}$$

- Moreover, a (linear) cost function can be optimized :-)
- Warning: The decision problem is in general, already NP-hard !!!
- Notwithstanding that, surprisingly efficient implementations exist.
- Not just loop fusion, but also other re-organizations of loops yield ILP problems ...

686

Question:

- Is there a solution over Q ?
- Is there a solution over \mathbb{Z} ?
- Is there a solution over \mathbb{N} ?

Let us reconsider the equations:

$$2x + 3y = 24$$
$$x - y + 5z = 3$$

Answers:

- Is there a solution over Q ? Yes
- Is there a solution over \mathbb{Z} ?
- Is there a solution over N ? No

Complexity:

- Is there a solution over

 Polynomial
- Is there a solution over \mathbb{Z} ? Polynomial
- Is there a solution over \mathbb{N} ? NP-hard

689

Question:

- Is there a solution over \mathbb{O} ?
- Is there a solution over \mathbb{Z} ?
- Is there a solution over \mathbb{N} ?

Let us reconsider the equations:

$$2x + 3y = 24$$

$$x - y + 5z = 3$$

688

Answers:

- Is there a solution over Q ? Yes
- Is there a solution over \mathbb{Z} ?
- Is there a solution over N ? No

Complexity:

- Is there a solution over Q ? Polynomial
- Is there a solution over \mathbb{Z} ? Polynomial
- Is there a solution over \mathbb{N} ? NP-hard

 $a \times = b$

Solution Method for Integers:

Observation 1:

$$a_1x_1 + \ldots + a_kx_k = b \qquad (\forall i: \ a_i \neq 0)$$

has a solution iff

$$\gcd\{a_1,\ldots,a_k\} \mid b$$

 $gcd(a_1,a_2)=d$ $a_1x_1+a_2x_2=d$

Example:

$$5y - 10z = 18$$

has no solution over \mathbb{Z} :-)

691

Example:

$$5y - 10z = 18$$

has no solution over \mathbb{Z} :-)

Observation 2:

Adding a multiple of one equation to another does not change the set of solutions :-)

692

Example:

$$2x + 3y = 24$$

x - y + 5z = 3

Example:

$$2x + 3y = 24$$

$$x - y + 5z = 3$$

$$5y - 10z = 18$$

$$x - y + 5z = 3$$

Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...

$$\begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{vmatrix} x - \begin{vmatrix}
5y & - & 10z & = & 18 \\
y & + & 5z & = & 3
\end{vmatrix}$$

695

Example:

$$\begin{array}{rcl}
2x & + & 3y & = & 24 \\
x & - & y & + & 5z & = & 3
\end{array}$$

Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...

$$\begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{vmatrix}
x - y + 5z = 3$$

Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...

$$\begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{vmatrix} x - y + 3z = 3$$

$$\begin{vmatrix}
1 & 0 & -3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
5y & = 18 \\
x - y & = 3$$

⇒ triangular form !!

696

Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...

$$\begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
5y & = 18 \\
x - y + 3z = 3$$

⇒ triangular form !!

696

Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...

⇒ triangular form !!

696

Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...

$$\begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{vmatrix}
x - y + 5z = 3$$

$$\begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{vmatrix} x - y + 3z = 3$$

Observation 4:

- A special solution of a triangular system can be directly read off
 :-)
- All solutions of a homogeneous triangular system can be directly read off :-)
- All solutions of the original system can be recovered from the solutions of the triangular system by means of the accumulated transformation matrix:-))

Example

$$\begin{vmatrix}
1 & 0 & -3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
5y & = 15 \\
x - y & = 3
\end{vmatrix}$$

One special solution:

$$[6, 3, 0]^{\mathsf{T}}$$

All solutions of the homogeneous system are spanned by:

$$[0, 0, 1]^{\top}$$

698

Example

One special solution:

$$[6, 3, 0]^{\mathsf{T}}$$

All solutions of the homogeneous system are spanned by:

$$[0, 0, 1]^{\top}$$

698

Example

$$\begin{vmatrix}
1 & 0 & -3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{vmatrix} x - y = 7$$

One special solution:

$$[6, 3, 0]^{\mathsf{T}}$$

All solutions of the homogeneous system are spanned by:

$$[0, 0, 1]^{\mathsf{T}}$$

698

Solving over N

- ... is of major practical importance;
- ... has led to the development of many new techniques;
- ... easily allows to encode NP-hard problems;
- ... remains difficult if just three variables are allowed per equation.

2. One Polynomial Special Case:

$$\begin{array}{cccc} & x & \geq & y+5 \\ 19 & \geq & x & & \\ & y & \geq & 13 \\ & y & \geq & x-7 \end{array}$$

- There are at most 2 variables per in-equation;
- no scaling factors.

700

Jean Baptiste Joseph Fourier, 1768–1830

Idea: Represent the system by a graph:

701

3. A General Solution Method:

Idea: Fourier-Motzkin Elimination

- Successively remove individual variables x!
- All in-equations with positive occurrences of x yield lower bounds.
- All in-equations with negative occurrences of x yield upper bounds.
- All lower bounds must be at most as big as all upper bounds ;-))

710

70

Example:

$$9 \leq 4x_1 + x_2$$
 (1)

$$4 \leq Q_1 + 2x_2$$
 (2)

$$0 \leq 2x_1 - x_2 \tag{3}$$

$$6 \leq (x_1 + 6x_2)$$
 (4)

$$-11 \le -x_1 - 2x_2 \tag{5}$$

$$-17 \leq -6x_1 + 2x_2$$
 (6)

$$-4 \leq -x_2 \tag{7}$$

711

3. A General Solution Method:

Idea: Fourier-Motzkin Elimination

- Successively remove individual variables x!
- All in-equations with positive occurrences of x yield lower bounds.
- All in-equations with negative occurrences of x yield upper bounds.
- All lower bounds must be at most as big as all upper bounds ;-))

709

Example:

$$9 \leq 4x_1 + x_2 \tag{1}$$

$$4 \leq x_1 + 2x_2$$
 (2)

$$0 \leq 2x_1 - x_2$$
 (3)

$$6 \leq x_1 + 6x_2$$
 (4)

$$-11 \le -x_1 - 2x_2 \tag{5}$$

$$-17 \le -6x_1 + 2x_2$$
 (6)

$$-4 \leq -x_2$$

For x_1 we obtain:

$$0 \leq 4x_1 + x_2 \tag{1}$$

$$4 \leq x_1 + 2x_2$$
 (2)

$$0 \leq 2x_1 - x_2 \tag{3}$$

$$6 \leq x_1 + 6x_2 \tag{4}$$

$$-11 \le -x_1 - 2x_2 \tag{5}$$

$$-17 \le -6x_1 + 2x_2 \tag{6}$$

$$-4 \leq -x_2 \tag{7}$$

$$\frac{9}{4} - \frac{1}{4}x_2 \le x_1$$

$$4 - 2x_2 \leq x \tag{2}$$

(1)

$$\frac{1}{2}x_2 \leq x \tag{3}$$

$$6 \quad 6x_2 \leq x_1 \tag{4}$$

$$-4 \qquad \leq -x_2 \qquad (7)$$

If such an x_1 exists, all lower bounds must be bounded by all upper bounds, i.e.,

713

 $\frac{9}{4} - \frac{1}{4}x_2 \le 11 - 2x_2 \qquad (1,5) \qquad -5 \le -x_2 \qquad (1,5)$ $\frac{9}{4} - \frac{1}{4}x_2 \le \frac{17}{6} + \frac{1}{3}x_2 \qquad (1,6) \qquad -1 \le x_2 \qquad (1,6)$ $4 - 2x_2 \le 11 - 2x_2 \qquad (2,5) \qquad -7 \le 0 \qquad (2,5)$ $4 - 2x_2 \le \frac{17}{6} + \frac{1}{3}x_2 \qquad (2,6) \qquad \frac{1}{2} \le x_2 \qquad (2,6)$ $\frac{1}{2}x_2 \le 11 - 2x_2 \qquad (3,5) \qquad \text{or} \qquad -\frac{22}{5} \le -x_2 \qquad (3,5)$ $\frac{1}{2}x_2 \le \frac{17}{6} + \frac{1}{3}x_2 \qquad (3,6) \qquad -17 \le -x_2 \qquad (3,6)$ $6 - 6x_2 \le 11 - 2x_2 \qquad (4,5) \qquad -\frac{5}{4} \le x_2 \qquad (4,5)$ $6 - 6x_2 \le \frac{17}{6} + \frac{1}{3}x_2 \qquad (4,6) \qquad \frac{1}{2} \le x_2 \qquad (4,6)$ $-4 \le -x_2 \qquad (7) \qquad -4 \le -x_2 \qquad (7)$

This is the one-variable case which we can solve exactly:

714

Example:

$$9 \leq 4x_1 + x_2 \qquad (1)$$

$$4 \leq x_1 + 2x_2 \qquad (2)$$

$$0 \leq 2x_1 - x_2 \tag{3}$$

$$6 \le x_1 + 6x_2$$
 (4)

$$-11 \le -x_1 - 2x_2 \tag{5}$$

$$-17 \leq -6x_1 + 2x_2$$
 (6)

$$-4 \le -x_2$$
 (7)

$$\max \ \{-1, \boxed{\tfrac{1}{2}}, -\tfrac{5}{4}, \tfrac{1}{2}\} \ \le \ \tfrac{x_2}{} \ \le \ \min \ \{5, \tfrac{22}{5}, 17, \boxed{4}\}$$

From which we conclude: $x_2 \in \left[\frac{1}{2}, 4\right]$:-)

In General:

- The original system has a solution over ℚ iff the system after elimination of one variable has a solution over ℚ :-)
- Every elimination step may square the number of in-equations
 exponential run-time :-((
- It can be modified such that it also decides satisfiability over Z
 ⇒ Omega Test

713

William Worthington Pugh, Jr. University of Maryland, College Park

716

Idea:

- We successively remove variables. Thereby we omit division ...
- If x only occurs with coefficient ± 1 , we apply Fourier-Motzkin elimination :-)
- Otherwise, we provide a bound for a positive multiple of x ...

Consider, e.g., (1) and (6):

$$6 \cdot x_1 \leq 17 + 2x_2$$
$$9 - x_2 \leq 4 \cdot x_1$$

 $\max \ \{-1, \boxed{\frac{1}{2}}, -\frac{5}{4}, \frac{1}{2}\} \ \le \ \frac{x_2}{} \ \le \ \min \ \{5, \frac{22}{5}, 17, \boxed{4}\}$

From which we conclude: $x_2 \in \left[\frac{1}{2}, 4\right]$:-)

In General:

- The original system has a solution over ℚ iff the system after elimination of one variable has a solution over ℚ :-)
- Every elimination step may square the number of in-equations
 exponential run-time :-((

$$\frac{9}{4} - \frac{1}{4}x_2 \le 11 - 2x_2 \qquad (1,5) \qquad -35 \le -7x_2 \qquad (1,5)
\frac{9}{4} - \frac{1}{4}x_2 \le \frac{17}{6} + \frac{1}{3}x_2 \qquad (1,6) \qquad -\frac{7}{12} \le \frac{7}{12}x_2 \qquad (1,6)
4 - 2x_2 \le 11 - 2x_2 \qquad (2,5) \qquad -7 \le 0 \qquad (2,5)
4 - 2x_2 \le \frac{17}{6} + \frac{1}{3}x_2 \qquad (2,6) \qquad \frac{7}{6} \le \frac{7}{3}x_2 \qquad (2,6)$$

$$\frac{9}{4} - \frac{1}{4}x_2 \le \frac{17}{6} + \frac{1}{3}x_2$$
 (1,6) $-\frac{7}{12} \le \frac{7}{12}x_2$ (1,6)

$$4 - 2x_2 \le 11 - 2x_2$$
 (2,5) $-7 \le 0$ (2,5)

$$4 - 2x_2 \le \frac{17}{6} + \frac{1}{3}x_2$$
 (2,6) $\frac{7}{6} \le \frac{7}{3}x_2$ (2,6)

$$\frac{1}{2}x_2 \le 11 - 2x_2$$
 (3,5) or $-22 \le -5x_2$ (3,5)

$$\frac{1}{2}x_2 \le \frac{17}{6} + \frac{1}{3}x_2$$
 (3,6) $-\frac{17}{6} \le -\frac{1}{6}x_2$ (3,6)

$$6 - 6x_2 \le 11 - 2x_2$$
 (4,5) $-5 \le 4x_2$ (4,5)

$$6 - 6x_2 \le \frac{17}{6} + \frac{1}{3}x_2$$
 (4,6) $\frac{19}{6} \le \frac{19}{3}x_2$ (4,6)

$$-4 \le -x_2$$
 (7) $-4 \le -x_2$ (7)

713

W.l.o.g., we only consider strict in-equations:

$$6 \cdot x_1 < 18 + 2x_2 8 - x_2 < 4 \cdot x_1$$

... where we always divide by gcds:

$$3 \cdot x_1 < 9 + x_2$$

$$8 - x_2 < 4 \cdot x_1$$

This implies:

$$3 \cdot (8 - x_2) < 4 \cdot (9 + x_2)$$

718

Idea:

- We successively remove variables. Thereby we omit division ...
- If x only occurs with coefficient ± 1 , we apply Fourier-Motzkin elimination :-)
- Otherwise, we provide a bound for a positive multiple of x ...

Consider, e.g., (1) and (6):

$$6 \cdot x_1 \leq 17 + 2x_2$$

$$9-x_2 \leq 4 \cdot x_1$$

W.l.o.g., we only consider strict in-equations:

$$6 \cdot x_1 < 18 + 2x_2$$

$$8 - x_2 < 4 \cdot x_1$$

... where we always divide by gcds:

$$\frac{3 \cdot x_1}{3 \cdot x_1} < 9 + x_2$$

$$8 - x_2 < 4 \cdot x_1$$

This implies:

$$3 \cdot (8 - x_2) < 4 \cdot (9 + x_2)$$

W.l.o.g., we only consider strict in-equations:

$$6 \cdot x_1 < 18 + 2x_2 8 - x_2 < 4 \cdot x_1$$

... where we always divide by gcds:

$$3 \cdot x_1 < 9 + x_2$$

 $8 - x_2 < 4 \cdot x_1$

This implies:

$$3 \cdot (8 - x_2) < 4 \cdot (9 + x_2)$$

718

W.l.o.g., we only consider strict in-equations:

$$\begin{array}{rcl}
 6 \cdot x_1 & < & 18 + 2x_2 \\
 8 - x_2 & < & 4 \cdot x_1
 \end{array}$$

... where we always divide by gcds:

$$3 \cdot x_1 < 9 + x_2$$

 $8 - x_2 < 4 \cdot x_1$

This implies:

$$3 \cdot (8 - x_2) < 4 \cdot (9 + x_2)$$

Idea:

- We successively remove variables. Thereby we omit division ...
- If x only occurs with coefficient ± 1 , we apply Fourier-Motzkin elimination :-)
- Otherwise, we provide a bound for a positive multiple of x ...

Consider, e.g., (1) and (6):

$$6 \cdot x_1 \leq 17 + 2x_2$$
$$9 - x_2 \leq 4 \cdot x_1$$

717

We thereby obtain:

- If one derived in-equation is unsatisfiable, then also the overall system :-)
- If all derived in-equations are satisfiable, then there is a solution which, however, need not be integer :-(
- An integer solution is guaranteed to exist if there is sufficient separation between lower and upper bound ...
- Assume $\alpha < a \cdot x$ $b \cdot x < \beta$.

Then it should hold that:

$$\mathbf{b} \cdot \alpha < \mathbf{a} \cdot \beta$$

and moreover:

$$a \cdot b < a \cdot \beta - b \cdot \alpha$$

W.l.o.g., we only consider strict in-equations:

$$6 \cdot x_1 < 18 + 2x_2$$

$$8 - x_2 < 4 \cdot x_1$$

... where we always divide by gcds:

$$3 \cdot x_1 < 9 + x_2$$

$$8 - x_2 < 4 \cdot x_1$$

This implies:

$$3 \cdot (8 - x_2) < 4 \cdot (9 + x_2)$$

718

... in the Example:

$$12 < 4 \cdot (9 + x_2) - 3 \cdot (8 - x_2)$$

or:

$$\frac{12}{12} < 12 + 7x_2$$

or:

$$0 < x_2$$

In the example, also these strengthened in-equations are satisfiable

 \implies the system has a solution over \mathbb{Z} :-)

We thereby obtain:

- If one derived in-equation is unsatisfiable, then also the overall system :-)
- If all derived in-equations are satisfiable, then there is a solution which, however, need not be integer :-(
- An integer solution is guaranteed to exist if there is sufficient separation between lower and upper bound ...
- Assume $\alpha < a \cdot x$ $b \cdot x < \beta$.

Then it should hold that:

$$b \cdot \alpha < a \cdot \beta$$

and moreover:

$$\boxed{a \cdot b} < a \cdot \beta - b \cdot \alpha$$

719

... in the Example:

$$12 < 4 \cdot (9 + x_2) - 3 \cdot (8 - x_2)$$

or:

$$\frac{12}{12} < 12 + 7x_2$$

or:

$$0 < x_2$$

In the example, also these strengthened in-equations are satisfiable

 \Longrightarrow the system has a solution over \mathbb{Z} :-)

Discussion:

- If the strengthened in-equations are satisfiable, then also the original system. The reverse implication may be wrong :-(
- In the case where upper and lower bound are not sufficiently separated, we have:

$$a \cdot \beta \leq b \cdot \alpha + \boxed{a \cdot b}$$

or:

$$b \cdot \alpha < ab \cdot x < b \cdot \alpha + a \cdot b$$

Division with **b** yields:

721

Discussion (cont.):

- Fourier-Motzkin Elimination is not the best method for rational systems of in-equations.
- The Omega test is necessarily exponential :-) If the system is solvable, the test generally terminates rapidly. It may have problems with unsolvable systems :-(
- Also for ILP, there are other/smarter algorithms ...
- For programming language problems, however, it seems to behave quite well :-)

Discussion:

- If the strengthened in-equations are satisfiable, then also the original system. The reverse implication may be wrong :-(
- In the case where upper and lower bound are not sufficiently separated, we have:

$$a \cdot \beta \leq b \cdot \alpha + \boxed{a \cdot b}$$

or:

$$b \cdot \alpha < ab \cdot x < b \cdot \alpha + a \cdot b$$

Division with b yields:

$$\alpha < a \cdot x < \alpha + \boxed{a}$$

 $\alpha + i = a \cdot x$ for some $i \in \{1, \dots, a-1\}$!!!

721

4. Generalization to a Logic

Disjunction:

$$(x-2y=15 \land x+y=7) \lor$$

 $(x+y=6 \land 3x+z=-8)$

Quantors:

$$\bigcirc \left(\exists x: z-2x=42 \land z+x=19 \right)$$

Mojzesz Presburger, 1904–1943 (?)

725

Presburger Arithmetic full arithmetic without multiplication

Arithmetic highly undecidable :-(even incomplete :-((

> Hilbert's 10th Problem Gödel's Theorem

-- /xz. p(x,,-., /2)=0

Presburger Arithmetic full arithmetic without multiplication

Arithmetic highly undecidable :-(even incomplete :-((

727