Script generated by TTT

Title: Seidl: Programmoptimierung (20.01.2014)

Date: Mon Jan 20 14:15:39 CET 2014
Duration: 90:17 min

Pages: 47

The UD-edge (3,4) has been inserted to exclude that = is
over-written before use :-)

In the next step, each instruction is annotated with its (required

ressources, in particular, its) execution time.
Our goal is a maximally parallel correct sequence of words.
For that, we maintain the current system state:

Y Vars = N

¥(xr) = expected delay until r is available

Initially:

TR n() =0

As an invariant, we guarantee on entry of the basic block, that all
operations are terminated :-)

662

Then the slots of the word sequence are successively filled:

e  We start with the minimal nodes in the dependence graph.

e If we fail to fill all slots of a word, we insert : =)

e  After every inserted instruction, we re-compute X .

Warning:

> The execution of two VLIWs can overlap !!!

> Determining an optimal sequence, is NP-hard ...

663

Example: Word width £ = 2
Word State

1 ‘ 2 x ‘ Y|z ‘ t

01000

r=x+1|y=M[A] 0|1]0/0

=z z=M[A+2z] ||0[0|1]0

0(0]0|0

t=y+z 0101010

In each cycle, the execution of a new word is triggered.

The state just records the number of cycles still to be waited for the result

-)

66




Example: Word width /i = 2

Word State
1 ‘ 2 T ‘ Y|z ‘ t
0(0j0|0
r=ax+1|y=M[A] 0|1/0/0
t==z z=M[A+a]||0|0]1]|0
0(ojo0|o0
t=y+=z 0(0[0]0

In each cycle, the execution of a new word is triggered.

Note:

e If instructions put constraints on future selection, we also record
these in X .
e  Overall, we still distinuish just finitely many system states :-)

e  The computation of the effect of a VLIW onto ¥ can be
compiled into a finite automaton !!!

e  This automaton, though, could be quite huge :-(

e  The challenge of making choices still remains :-(

e  Basic blocks usually are not very large

_— tunities f llelizati e limited  :-
The state just records the number of cycles still to be waited for the result opportinities for paratielizahion are fmie (
=)
664 665
Extension 1: Acyclic Code E
if (x>1){
y = MI[A];
z=x—1;

} oelse {
y = M[A+1];

z=x— 1:

}

y=1y+1;

The dependence graph must be enriched with extra control-dependencies

666

The statement = = — 1; is executed with the same arguments in both
branches and does not modify any of the remaining variables :-)

We could have moved it before the  if anyway :-))

667




Extension 1: Acyclic Code

if (x>1){
y = MIA]
z=x—1;

} else {
y=M[A+1];

z=x—1;

}

y=y+1L

The dependence graph must be enriched with extra control-dependencies

666

The statement = = — 1: is executed with the same arguments in both
branches and does not modify any of the remaining variables :-)

We could have moved it before the if anyway :-))

667

The statement = =1 — 1: is executed with the same arguments in both
branches and does not modify any of the remaining variables :-)

We could have moved it before the if anyway :-))

667

The following code could be generated:

z=x—1 if ({(r>0)) goto A
y=MI[A]
goto 5

A ly=M[A+1]

B:ly=y+1

At every jump target, we guarantee the invariant  :-(

B68




If we allow several (known) states on entry of a sub-block, we can
generate code which complies with all of these.

... in the Example:

z=x—1 if (!(x>0)) goto A
y = M[4] goto B
A ly=M[A+1]
B
y=y+1
669

If this parallelism is not yet sufficient, we could try to speculatively
execute possibly useful tasks ...

For that, we require:

e an idea which alternative is executed more frequently;
e the wrong execution may not end in a catastrophy, i.e., run-time
errors such as, e.g., division by 0;

e the wrong execution must allow roll-back (e.g., by delaying a
commit) or may not have any observational effects ...

670

If we allow several (known) states on entry of a sub-block, we can
generate code which complies with all of these.

... in the Example:

z=r-1 if ({{(x>0)) goto A
y = M[A] goto I3

A ly=M[A+1]

B
y=y+1

669

If this parallelism is not yet sufficient, we could try to speculatively
execute possibly useful tasks ...

For that, we require:

e an idea which alternative is executed more frequently;

e the wrong execution may not end in a catastrophy, i.e., run-time
errors such as, e.g., division by 0;

e the wrong execution must allow roll-back (e.g., by delaying a
commit) or may not have any observational effects ...

670




If this parallelism is not yet sufficient, we could try to speculatively
execute possibly useful tasks ...

For that, we require:

e anidea which alternative is executed more frequently;
e the wrong execution may not end in a catastrophy, i.e., rTun-time
errors such as, e.g., division by 0;

e the wrong execution must allow roll-back (e.g., by delaying a
commit) or may not have any observational effects ...

670

If this parallelism is not yet sufficient, we could try to speculatively
execute possibly useful tasks ...

For that, we require:

e an idea which alternative is executed more frequently;
e the wrong execution may not end in a catastrophy, i.e., run-time
errors such as, e.g., division by 0;

e the wrong execution must allow roll-back (e.g., by delaying a
commit) or may not have any observational effects ...

670

If this parallelism is not yet sufficient, we could try to speculatively
execute possibly useful tasks ...

For that, we require:

e an idea which alternative is executed more frequently;

e the wrong execution may not end in a catastrophy, i.e., run-time
errors such as, e.g., division by 0;

e the wrong execution must allow roll-back (e.g., by delaying a
commit) or may not have any observational effects ...

a0

... in the Example:

s=z—1 E,}M[A] if (x> 0) goto B

"y MIA+1]

y=y+1

Inthecase x <0 wehave y= M[A] executed in advance.

This value, however, is overwritten in the next step  :-)

In general:
x = e; has no observable effect in a branch if = is dead in this
branch :-)




... in the Example:

z=x-1 y=M[A] |if (x>0) goto B

B :

Inthecase x < (0 wehave y= M[A] executed in advance.

This value, however, is overwritten in the next step  :-)

In general:

x = e; has no observable effect in a branch if » is dead in this
branch :-)

Extension 2: Unrolling of Loops

We may unrole important, i.e., inner loops several times:

Extension 2: Unrolling of Loops

‘We may unrole important, i.e., inner loops several times:

Extension 2: Unrolling of Loops

We may unrole important, i.e., inner loops several times:




Extension 2: Unrolling of Loops

‘We may unrole important, i.e., inner loops several times:

Now it is clear which side of tests to prefer:

the side which stays within the unroled body of the loop :-)

Warning:

e The different instances of the body are translated relative to possibly
different initial states :-)

e The code behind the loop must be correct relative to the exit state
corresponding to every jump out of the loop!

Extension 2: Unrolling of Loops

‘We may unrole important, i.e., inner loops several times:

Example:

for (x =02 < n;x++)
M[A+ 1] =z

Duplication of the body yields:




for (x =0;2 <njx++) {
M[A+ 2] =z
r=ux+1;
if (!(x < n)) break;
MIA + 2] = z;

}

for (x =0;x <n;z++) {
M[A+ 2] =z
r=ux+1;
if (Nx < n)) break;
MIA + 2] = z;

}

for (v =0;2 <nyx++) {
MIA + 2] = z
r=ux+1;
if (!(z <mn)) break;
MI[A + 2] = z

}

It would be better if we could remove the assignment » — 2 + 1:
together with the test in the middle — since these serialize the execution
of the copies !!

This is possible if we substitute -+ 1 for x in the second copy,
transform the condition and add a compensation code:

for (x=024+1<mz=x+2) {
MA+ 2] =z
MA+2+1] =z

if (x<n){
MA+ 2] =z

r=ux+1;

}




Discussion:

Elimination of the intermediate test together with the the fusion of
all increments at the end reveals that the different loop iterations are
in fact independent  :-)

Nonetheless, we do not gain much since we only allow one store per
word :-(

If right-hand sides, however, are more complex, we can interleave
their evaluation with the stores  :-)

Extension 3:

Sometimes, one loop alone does not provide enough opportunities for
parallelization :-(

... but perhaps two successively in arow  :-)

Example:

for (z =02 < nja++) { for (x =0;2 < nya++) {

R = B[x]; R = Blz];
S £ Clz); S = Clx];
hi=R+S; Th=R-S;
Alx] = Ty; Clx]|= Ts;

} }

In order to fuse two loops into one, we require that:

the iteration schemes coincide;

e

the two loops access different data.

In case of individual variables, this can easily be verified.

This is more difficult in presence of arrays.

Taking the source program into account, accesses to distinct statically

allocated arrays can be identified.

An analysis of accesses to the same array is significantly more difficult ...

679

Extension 3:

Sometimes, one loop alone does not provide enough opportunities for
parallelization :-(

... but perhaps two successively in arow  :-)
Example:
for (x=0;2 <n;a++) { for (r=0:0 <piaetd) {
R = Blx];
S = Clx];
T.=R - S;
@): Ty;

4




In order to fuse two loops into one, we require that:

e the iteration schemes coincide;

e the two loops access different data.

In case of individual variables, this can easily be verified.
This is more difficult in presence of arrays.

Taking the source program into account, accesses to distinct statically
allocated arrays can be identified.

An analysis of accesses to the same array is significantly more difficult ...

679

Extension 3:

Sometimes, one loop alone does not provide enough opportunities for
parallelization :-(

... but perhaps two successively in arow  :-)

Example:
for (z =02 < nja++) { for (x =0;2 < nya++) {
R = Blz]; R = Blz];
S = Clz); S = Clx];
hi=R+S; T,=R-S;

Alx] = Ty; @: T;
} }

Assume that the blocks A, B, ' are distinct.

Then we can combine the two loops into:

for (=02 < n;x++4) {

R = Blx]; R = Blx];
S =Clxl; S =Clzx);
=R+ S; Ih=R-S;
Alx] = Ty; Clx] = Ty;

680

The first loop may in iteration x not read data which the second loop
writes to in iterations < x .

The second loop may in iteration x not read data which the first loop

writes to in iterations > x .

If the index expressions of jointly accessed arrays are linear, the given
constraints can be verified through integer linear programming ...

‘ Twrite = 1
i > 0
‘ Tread = T
i < r—1
Lread = Twrite

I %reaq read access to C' by st loop
I Twrire Write access to C' by 2nd loop

... obviously has no solution :-)

681




The first loop may in iteration 2 not read data which the second loop
writes to in iterations < x .

The second loop may in iteration 2 not read data which the first loop

writes to in iterations > x .

If the index expressions of jointly accessed arrays are linear, the given
consfraints can be verified through integer linear programming ...

¥uwh % > o0 2

o < 1o Tread = &
LTread =  Twrite

I read Tead access to C' by st loop

I Zwrite Write access to C' by 2nd loop

... obviously has no solution :-)

XE % =4

681

General Form:

s = i
ty > s

hnh = 51
Yo = 2
1= Y2

for linear expressions  s.1q, ty, 51, 8o over ¢ and the iteration variables.

This can be simplified to:

What should we do with it 777

682
zx = C
General Form:
Simple Case:
& 2 f]_
The two inequations have no solution over ). >
95 = 8
Then they also have no solution over Z :-) y .
1= 51
. UYs = 8o
... in Our Example: Y
o= 4

r = i
< 4 =
0 < z—-1—-1 = -1

The second inequation has no solution :-)

683

for linear expressions  s,%q, 9, 51, 5o over ¢ and the iteration variables.

This can be simplified to:

0 S z‘:'—lll

What should we do with it 77?7

OSI’Q—S 025'1—5'2

682




Simple Case:

The two inequations have no solution over  [).

Then they also have no solution over 7Z :-)

... in Our Example:

One Variable:

The inequations where x  occurs positive, provide lower bounds.
The inequations where x  occurs negative, provide upper bounds.

If @, L arethe greatest lower and the least upper bound, respectively,
then all (integer) solution are in the interval |G, L] :-)

x o= i Example:

0 < i - 4 < 13-T-x r < 2

. - — -

@S z—1—i @ < =145z r Z l)

The second inequation has no solution :-) . . .
1 The only integer solution of the systemis z=1 :-) /r_s
A L 5
T £ & T
683 684
Discussion:

Discussion:

e  Solutions only matter within the bounds to the iteration variables.

e  Every integer solution there provides a conflict.

e  Fusion of loops is possible if no conflicts occur  :-)

o The given special case suffices to solve the case one variable over
Zoo-)

e  The number of variables in the inequations corresponds to the
nesting-depth of for-loops —— in general, is quite small :-)

683

e Integer Linear Programming (ILP) can decide satisfiability of a
finite set of equations/inequations over 7 of the form:

n n

Z”’i -1; =b bzw Z a;-r; =2 b, a, €7

i=1 i=1
e  Moreover, a (linear) cost function can be optimized :-)
e  Warning: The decision problem is in general, already NP-hard !!!
e  Notwithstanding that, surprisingly efficient implementations exist.

e Not just loop fusion, but also other re-organizations of loops yield

ILP problems ...

686




