Script generated by TTT

Title: Seidl: Programmoptimierung (15.01.2014)
Date: Wed Jan 15 08:31:02 CET 2014

Duration: 89:15 min

The general case:

e Every register receives its value at most once.

e The assignment therefore can be decomposed into a permutation
together with tree-like assignments (directed towards the leaves) ...

Example

W=R =Ry|Ri=Ri|Rs=Rs | Rs = Ry

3

The parallel assignment realizes the linear register moves for /i, /7, and
£y together with the cyclic shift for 5 and Hs:

Pages: 29
Y = Ri=R,
11)2 — J.{ljl:
Ry + Rs:
649
—r— &P
The general case: @ ‘

e Every register receives its value at most once. @@
e The assignment therefore can be decomposed info a perniutal

together with tree-like assignments (directed towards the leaves) ...

Example

=Ry =Ry|Ry=Ry| Ry=Rs | Rs = Ry

3

The parallel assignment realizes the linear register moves for /7, i, and
IR, together with the cyclic shift for /75 and R5:

¥ = Ri= Ry
1,1)2 71,1)1
R < Rs;

649

Interprocedural Register Allocation:

+ For every local variable, there is an entry in the stack frame.

> Before calling a function, the locals must be saved into the stack
frame and be restoged afffr the dall
F\/-ﬁ ; %_, MP_
> Sometimes there is'hardware support :-)
A
Then the call is transparent for all registers. %

> If it is our responsibility to save and restore, we may ...

e save only registers which are over-written :-)

e restore overwritten registers only.

» Alternatively, we save only registers which are still live after the
call — and then possibly into different registers ——>
reduction of life ranges :-)

650

C N T @
},(fa Ci/d) 7 The general case: J ‘

4]
r bz C‘M e Every register receives its value at most once.
\-\ c C}\ e The assignment therefore can be decomposed into a permutation
! LY2 /"&' together with tree-like assignments (directed towards the leaves) ...

% ’
\ ng Example M 'TBFSQ,,_‘ ?%M?\,

W=R =Ry|Ri=Ri|Rs=Rs | Rs = Ry

=]

The parallel assignment realizes the linear register moves for /i, /7, and
£y together with the cyclic shift for 5 and Hs:

S:\/%f‘) — [,\') . ¥ = Ry= Ry
< Ry = Ry

o, G, @)

X€H

649

C& G/(‘f} :Ci[‘

Interprocedural Register Allocation: b,s a
@ (2 ™
> For every local variable, there is an entry in the stack frame. C
. . . ¢ C57- %/‘}

> Before calling a function, the locals must be saved into the stack

frame and be restored after the call. %
> Sometimes there is hardware support :-) \ ng

Then the call is transparent for all registers. _
> If it is our responsibility to save and restore, we may ... bf

e save only registers which are over-written :-)

e restore overwritten registers only.

> Alternatively, we save only registers which are still live after the S: \AJ‘) — [L)

call — and then possibly into different registers ——

reduction of life ranges :-) M :5_ C)g (gﬁ)(/ S 'a) |
1 (3

630 x #%—

Interprocedural Register Allocation:

> For every local variab) c,\"ﬁ‘a:c isfan entry in the stack frame.

> Before calling a functjon, the lodals must be saved into the stack

frame and be restored pfter-the-gall.
> Sometimes there is hafdware support :-)
Then the call is transp ll‘gy-@r dll registers.

> If it is our responsibilify to save|and restore, we may ...

e save only registgrs-whichrpre over-written :-)

0 ng_tmvcrwritt:n registejrs only.
> ﬁ:ﬁﬁrmaWQ savelonly sr-gi sters which are still live after the

call — and thcn"possi ly into d]ffcrcm registers ——

reduction of life ranges :-)

650

3.2 Instruction Level Parallelism

Modem processors do not execute one instruction after the other strictly

sequentially.

Here, we consider two approaches:

(1) VLIW (Very Large Instruction Words)
(2) Pipelining

3.2 Instruction Level Parallelism

Modern processors do not execute one instruction after the other strictly

sequentially.

Here, we consider two approaches:

(1) VLIW (Very Large Instruction Words)
(2) Pipelining

3.2 Instruction Level Parallelism

Modermn processors do not execute one instruction after the other strictly
sequentially.

Here, we consider two approaches:

(1) VLIW (Very Large Instruction Words)
(2) Pipelining

«

VLIW:

One instruction simultaneously executesupto & (e.g., 4:-)
elementary Instructions.

Pipelining:

Instruction execution may overlap.

Example:
w= @ =+ Ry @ =Dy D, e M[Ry])

652

Warning:

e Instructions occupy hardware ressources.
e Instructions may access the same busses/registers —= hazards
e Results of an instruction may be available only after some delay.

e During execution, different parts of the hardware are involved:

Fetch Decode Execute Write

e During Execute and Write different internal registers/busses/alus
may be used.

653

We conclude:

Distributing the instruction sequence into sequences of words is amenable
to various constraints ...

In the following, we ignore the phases Feich und Decode :-)

Examples for Constraints:

(1) at most one load/store per word;
(2) at mostone jump;
(3) at mostone write into the same register.

634

Warning:

e Instructions occupy hardware ressources.
e Instructions may access the same busses/registers ——+ hazards
e Results of an instruction may be available only after some delay.

e During execution, different parts of the hardware are involved:

Fetch Decode Execute Write

Tots

e During Execute and Write different internal registers/busses/alus
—_—

e
653

may be used.

We conclude:

Distributing the instruction sequence into sequences of words is amenable
to various constraints ...

In the following, we ignore the phases Fetch und Decode :-)

Examples for Constraints:

(1) at most one load/store per word;
(2) at mostone jump;
(3) at most one write into the same register.

654

Example Timing:

Floating-point Operation | 3

Load/Store 2

Integer Arithmetic l

Timing Diagram:

pist Hs Ry D

0ol s B KE
11

2 49

"
=
~1
e

Ry is over-written, after the addition has fetched 2 :-)

We conclude:

Distributing the instruction sequence into sequences of words is amenable
to various constraints ...

In the following, we ignore the phases Feich und Decode :-)

Examples for Constraints:

(1) at most one loadfstore per word; &
(2) at most one jump;

(3) at mostone write into the same register.

634

Example Timing:

Floating-point Operation | 3

Load/Store 2

Integer Arithmetic 1

Timing Diagram:

R’ Rs s D

0| 5 \ T8 03

2 49

(9]

17.4

Rs is over-wrilten, alter the addition has fetched 2 :-)

VLIW:

One instruction simultaneously executesupto & (e.g., 4:-)
elementary Instructions.

Pipelining:

Instruction execution may overlap.
Example:

w=(Ry=Ry+ Ry | D= Dy %D, | Ry = M[RJ])

652

Example Timing:
Floating-point Operation | 3

Load/Store 2

Integer Arithmetic l

Timing Diagram:
Ry Ry Ry D

0ol s B KE
11

2 49

"
=
~1
e

Ry is over-written, after the addition has fetched 2 :-)

If a register is accessed simultaneously (here: [?3), a strategy of conflict
solving is required ...
Conflicts:

Read-Read: A register is simultaneously read.

——=— in general, unproblematic :-)

Read-Write: A register 1§ simultaneously|read and written.
Conflict Resolution:

e .. ruled out!
e Read is delayed (stalls), until write has terminated!

e Read before write returns old value!

636

Write-Write: A register is simultaneously written to.
——= in general, unproblematic :-)

Conflict Resolutions:

. ... ruled out!

In Our Examples ...

e simultaneous read is permitted;
e simultaneous write/read and write/write is ruled out;

e 1o stalls are injected.

We first consider basic blocks only, i.e., linear sequences of assignments

[dea:

Data Dependence Graph

Vertices | Instructions

Possible Dependencies:

. Definition — Use // Reaching Definitions
Edges Dependencies 1 = }3 él
ST > Definition _———f—=222-—=
Example: Befiitor—Definitres L—Reaching Definifions
(1) @ +1; Reaching Definitions:
(2) y= MI[A]; . . L
- Determine for each « which definitions may reach ——=> canbe
(3) Q} % determined by means of a system of constraints ~ :-)
(4) z=M[A+z]
) Lty + 2 ... in the Example:
658 659
. . . . The UD-edge (3.4) has been inserted to exclude that = is
Let U;, D; denote the sets of variables which are used or defined at) £ (3. 4)
. over-written before use :-)
the edge outgoing from wu; . Then:

(uy,us) € DD if wy € Rlug) ADy N Dy #0
(uy, us) € DU if w € Rlus)ADNU; #£ D

... in the Example:

‘ ‘ l Def | Use ‘
1 A r+1; {x} | {z}
2| y=M[4] {u} | {A}
3 5’! z {t} | {=}
4| z=MA+z]; | {z} | {4, x}
ﬂ
D :’9 y+z A {t} | {w, =}

661

In the next step, each instruction is annotated with its (required
ressources, in particular, its) execution time.

Our goal is a maximally parallel correct sequence of words.

For that, we maintain the current system state:

¥ Vars — N&—

¥(r) = expected delay until x is available

Initially:
¥(r) =10

As an invariant, we guarantee on entry of the basic block, that all
operations are terminated :-)

662

Then the slots of the word sequence are successively filled:

e We start with the minimal nodes in the dependence graph.

e If we fail to fill all slots of a word, we insert =)

e After every inserted instruction, we re-compute > .

Warning:

> The execution of two VLIWs can overlap !!!

> Determining an optimal sequence, is NP-hard ...

663

Then the slots of the word sequence are successively filled:

e We start with the minimal nodes in the dependence graph.
e If we fail to fill all slots of a word, we insert =)

e After every inserted instruction, we re-compute X .

Warning:

> The execution of two VLLIWSs can overlap !!!

+ Determining an optimal sequence, is NP-hard ...

663

