Script generated by TTT

Title: Seidl: Programmoptimierung (08.01.2014)
Date: Wed Jan 08 08:31:12 CET 2014
Duration: 88:52 min

Pages: 41

... in the Example this is:

\ﬁ enter

enter

Pos ()

ret;

582

... in the Example this is: ¥
P Z@ DEY)

work \/_\ enter

Neg (ap)

Pos (a1)

enter

... in the Example this is:

enter

582

... in the Example this is:

work () \ enter
: G

Neg (@)

enter

Pos (ay)

The conditions for 5,7,10, e.g., are:

=
L

combine* (R[4], R[10])

3
=
I

enterf (R[4])
enter! (R[8])

=
=
I

k)
L

combine? (R[8], R[10])

Warning:

The resulting super-graph contains obviously impossible paths ...

581 580
... in the Example this is: ... in the Example this is:
Al enter
wviork-{ \G\‘
Neg (ay) Pos (a;) Neg (a1) %
3; 3;
enter
\combine
ret;
582 381

... in the Example this is:

work \

main()

enter

Neg (@)

enter

Pos (a,)

3 Exploiting Hardware Features

Question: How can we optimally use:

Registers
Pipelines
Caches

Processors 777

581 584
3.1 Registers
PP Example:
3 Exploiting Hardware Features P
read();
. x = M[A];
Question: How can we optimally use: ! 4]
y=x+1;
if (u) {
Registers EEEE
Pipelines MiA] == Neg (y)
i } else {
aches b=y R
Processors 777 MIA] =1;
) o
584 385

The program uses 5 variables ...

read();
x = M[A];
Problem: y=ax+1
i (y) {
‘What if the program uses more variables than there are registers :~(R
M[A] =z
I[dea: } else {
t=—y-u
Use one register for several variables :-) M[A] = t;
In the example, e.g., one for =, 1, = .. }
586 587

d(); .
read() Warning:
R = MI[A]; -
R+1;
) { This is only possible if the live ranges do not overlap :-)
y
R =Rk
M[A] = T The (true) live range of = is defined by:
A= 1, Neg (y)
} else {
R=-y-y R=—y v Llz] = {ulxe Llul}
M[A] = &; i ... in the Example:
] 1

588 589

71 {A, =}
6| {4, x}
51 {4,t}
41 {A y}
31{A 2y}
2|1 {4, x}
1| {A} M]

71 {A, 2}

6| {4, x}
51 {40
4 [{A, v}
30{A, x,y}
'[- 2| {A, x}

' 1] {4

0] {4}

590 591

Variables which are not connected with an edge can be assigned to the

. same register :-)
Live Ranges: g

592 395

Variables which are not connected with an edge can be assigned to the

same register :-)

® @

595

Variables which are not connected with an edge can be assigned to the

same register :-)

N

Color == Register

596

Sviatoslav Sergeevich Lavrov,

Russian Academy of Sciences (1962)

397

Gregory J. Chaitin, University of Maine (1981)

598

Gregory J. Chaitin, University of Maine (1981)

598

Abstract Problem:
Given: Undirected Graph (V, E) .
Wanted: Minimal coloring, i.e., mapping ¢:V — N mit

() c(u) #ec(v) for {u,v} €E;
2 Ue(w) [weV} minimal!

e In the example, 3 colors suffice :-) But:
e In general, the minimal coloring is not unique :-(
e It is NP-complete to determine whether there is a coloring with at

most k£ colors :-((

——

We must rely 01* heuristics pr |§pccial cases | -)

T T

Greedy Heuristics:

e Start somewhere with color 1;

e Next choose the smallest color which is different from the colors of
all already colored neighbors;

e If anode is colored, color all neighbors which not yet have colors;

e Deal with one component after the other ...

600

... MOre concretely:

forall (v e V) cfv] = 0;
forall (v € V) color (v);

void color (v) {
if (c[v] #0) return;
neighbors = {u € V' | {u,v} € E};
cle] =[Nk > 0| Vu € neighbors : k # c(u)};
forall (u € neighbors)
if (c(u)==10) color (u);

The new color can be easily determined once the neighbors are sorted
according to their colors :-)

601

Discussion:

> Essentially, this is a Pre-order DFS :-)

> In theory, the result may arbitrarily far from the optimum :-(

Discussion:

> Essentially, this is a Pre-order DFS :-)

+ In theory, the result may arbitrarily far from the optimum :-(

» ... 1n praclice, it may not be as bad :-) » ...in practice, it may not be as bad :-)
> ... Anecdote: different variants have been patented !!! » ... Anecdote: different variants have been patented !!!
602 602
Discussion: Special Case: Basic Blocks
> Essentially, this is a Pre-order DFS :-)
> In theory, the result may arbitrarily far from the optimum :-(
> ... 1n practice, it may not be as bad :-) A= oty
» ... Anecdote: different variants have been patented !!! .
MA] =z
r=ur+1;
The algorithm works the better the smaller life ranges are ... z = M[A];
t = Mlz];
Idea: Life Range Splitting Ay =1+t
M[As] = z;
y = Mx];
Mly] = t;

603

60

The live rangesof = and = can be split:

L

Y,z
Ay =a+y; T,z
M[A] = z; x
o =x+ 1;)
2 = M[Ay]; T, 7
t = Mluxi]; 1, 71,1
Ay =y + £ X1, 21,1
M[As] = zy; 2,1
y1 = M 1,1
My =t

606

The live ranges of = and =z can be split:
L

r, Yy,
A=z +uy; T,z
M[A] = z; x
rn=x+1; rq
z = M[A4]; Ty, %
t = Mlai]; 1, 21,1
Ay =1 + t; T, 2.1
M[As] = 21; rq,t
Y= M), 1,1
My =1,

607

Interference graphs for minimal live ranges on basic blocks are known as
interval graphs:

K,
I

vertex ——— interval

edge == joint vertex

608

Interference graphs for minimal live ranges on basic blocks are known as
interval graphs:

vertex —— interval

edge == joint vertex

B0

The live rangesof = and = can be split:
L

LY,z

Ay =a+y; T,z

M[A] = z; x

o =x+ 1;)

2 = M[Ay]; T, 7

t = Mluxi]; 1, 71,1

Ay =y + £ X1, 21,1

M[As] = zy; 2,1

th = MJu]; 1.t

My =t

607

The covering number of a vertex is given by the number of incident
intervals.

Theorem:

maximal covering number
—— size of the maximal clique

—— minimally necessary number of colors

Graphs with this property (for every sub-graph) are called perfect ...

A minimal coloring can be found in polynomial time :-))

609

The covering number of a vertex is given by the number of incident
intervals.

Theorem:

maximal covering number
—— size of the maximal clique

== minimally necessary number of colors

Graphs with this property (for every sub-graph) are called perfect ...

A minimal coloring can be found in polynomial time :-))

60Y

Idea:

» Conceptually iterate over the vertices 0,...,m — 1!
> Maintain a list of currently free colors.
> If an interval starts, allocate the next free color.

> If an interval ends, free its color.

This results in the following algorithm:

610

free =[1,...,k];
for (i =0;i<m;i++) {

init[i] = [; exit[t] = [J;
}
forall (I = [u,v] € Intervals) {

init[u] = (1 :init[u]); exit[v] = (I ::exit[v]):
}
for (i =050 < myit++) {

forall (I € init[2]) {

color[I] = hd free; free = tl free;
}
forall (I € exit[i]) free = color[{] :: free; I___

=] @

Discussion:

+ For arbitrary programs, we thus may apply some heuristics for
graph coloring ...

» If the number of real register does not suffice, the remaining
variables are spilled into a fixed area on the stack.

> Generally, variables from inner loops are preferably held in
registers.

» For basic blocks we have succeeded to derive an optimal register
allocation :-)

The number of required registers could even be determined
before-hand !

+ This works only once live ranges have been split.

» _Splitfing of live ranges for full programs results programs i
single assignment form ...
612 g-’ § /AS

