Script generated by TTT

Title: Seidl: Programmoptimierung (08.01.2014)

Date: Wed Jan 08 08:31:12 CET 2014

Duration: 88:52 min

Pages: 41

... in the Example this is:

581

The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \supseteq \mathsf{combine}^{\sharp} (\mathcal{R}[4], \mathcal{R}[10])$$

$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[4])$$

$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[8])$$

$$\mathcal{R}[9] \supseteq \mathsf{combine}^{\sharp} (\mathcal{R}[8], \mathcal{R}[10])$$

Warning:

The resulting super-graph contains obviously impossible paths ...

580

... in the Example this is:

... in the Example this is:

... in the Example this is:

581

3 Exploiting Hardware Features

Question: How can we optimally use:

... Registers

... Pipelines

.. Caches

... Processors ???

584

3 Exploiting Hardware Features

Question: How can we optimally use:

... Registers

... Pipelines

... Caches

... Processors ???

3.1 Registers

Example:

584

The program uses 5 variables ...

Problem:

What if the program uses more variables than there are registers :-(

Idea:

Use one register for several variables :-) In the example, e.g., one for $x, t, z \dots$

586

 $\begin{array}{l} {\rm read}(); \\ R=M[A]; \\ \hline y=R+1; \\ {\rm if} \ \ (y) \ \{ \\ R=R \ R, \\ M[A]=R; \\ \} \ {\rm else} \ \{ \\ R=-y\cdot y; \\ M[A]=R; \\ \} \end{array} \qquad \begin{array}{l} {\rm Neg} \ (y) \\ {\rm Re} \ (x) \\ {\rm Neg} \ (y) \\ {\rm Sec} \ (y) \\ {\rm Re} \ (x) \\ {\rm Re} \ (y) \\ {\rm Re} \ (x) \\ {\rm Re} \ (y) \\ {\rm$

587

Warning:

This is only possible if the live ranges do not overlap :-)

The (true) live range of x is defined by:

$$\mathcal{L}[x] = \{ \mathbf{u} \mid x \in \mathcal{L}[\mathbf{u}] \}$$

... in the Example:

588

	\mathcal{L}
8	Ø
7	$\{A,z\}$
6	$\{A,x\}$
5	$\{A,t\}$
4	$\{A,y\}$
3	A, x, y
2	$\{A,x\}$
1	$\{A\}$
0	Ø

	\mathcal{L}
8	Ø
7	$\{A,z\}$
6	$\{A, x\}$
5	$\{A,t\}$
4	$\{A,y\}$
3	A, x, y
2	$\{A,x\}$
1	$\{A\}$
0	$\{A\}$

590

Live Ranges:

$$\begin{array}{c|c}
A & \{0, \dots, 7\} \\
x & \{2, 3, 6\} \\
y & \{2, 4\} \\
t & \{5\} \\
z & \{7\}
\end{array}$$

Variables which are not connected with an edge can be assigned to the same register :-)

591

Variables which are not connected with an edge can be assigned to the same register :-)

595

Variables which are not connected with an edge can be assigned to the same register :-)

Color = Register

59

Sviatoslav Sergeevich Lavrov, Russian Academy of Sciences (1962)

Gregory J. Chaitin, University of Maine (1981)

597

Gregory J. Chaitin, University of Maine (1981)

598

Greedy Heuristics:

- Start somewhere with color 1;
- Next choose the smallest color which is different from the colors of all already colored neighbors;
- If a node is colored, color all neighbors which not yet have colors;
- Deal with one component after the other ...

Abstract Problem:

Given: Undirected Graph (V, E).

Wanted: Minimal coloring, i.e., mapping $c: V \to \mathbb{N}$ mit

(1) $c(u) \neq c(v)$ for $\{u, v\} \in E;$ (2) $\bigsqcup \{c(u) \mid u \in V\}$ minimal!

- In the example, 3 colors suffice :-) But:
- In general, the minimal coloring is not unique :-(
- It is NP-complete to determine whether there is a coloring with at most k colors :-((

... more concretely:

```
\begin{aligned} & \text{forall} \  \, (v \in V) \  \, c[v] = 0; \\ & \text{forall} \  \, (v \in V) \  \, \text{color} \, (v); \\ & \text{void} \  \, \text{color} \, (v) \, \, \{ \\ & \text{if} \  \, (c[v] \neq 0) \  \, \text{return}; \\ & \text{neighbors} = \{u \in V \mid \{u,v\} \in E\}; \\ & c[v] = \prod \{k > 0 \mid \forall \, u \in \text{neighbors} : \, \, k \neq c(u)\}; \\ & \text{forall} \  \, (u \in \text{neighbors}) \\ & \text{if} \  \, (c(u) == 0) \  \, \text{color} \, (u); \\ & \} \end{aligned}
```

The new color can be easily determined once the neighbors are sorted according to their colors :-)

Discussion:

- → Essentially, this is a Pre-order DFS :-)
- → In theory, the result may arbitrarily far from the optimum :-(
- → ... in practice, it may not be as bad :-)
- → ... Anecdote: different variants have been patented !!!

602

Discussion:

- → Essentially, this is a Pre-order DFS :-)
- → In theory, the result may arbitrarily far from the optimum :-(
- → ... in practice, it may not be as bad :-)
- → ... Anecdote: different variants have been patented !!!

602

Discussion:

- → Essentially, this is a Pre-order DFS :-)
- → In theory, the result may arbitrarily far from the optimum :-(
- → ... in practice, it may not be as bad :-)
- → ... Anecdote: different variants have been patented !!!

The algorithm works the better the smaller life ranges are ...

Idea: Life Range Splitting

Special Case:

Basic Blocks

603

The live ranges of x and z can be split:

	L
	x, y, z
$A_1 = x + y;$	x, z
$M[A_1] = z;$	x
$x_1 = x + 1;$	x_1
$z_1 = M[A_1];$	x_1, z_1
$t = M[\mathbf{x_1}];$	x_1, z_1, t
$A_2 = \mathbf{x_1} + t;$	x_1, z_1, t
$M[A_2] = \mathbf{z_1};$	x_1, t
$\mathbf{y_1} = M[\mathbf{x_1}];$	y_1, t
$M[\mathbf{y_1}] = t;$	

606

The live ranges of x and z can be split:

	\mathcal{L}
	x, y, z
$A_1 = x + y;$	x, z
$M[A_1] = z;$	x
$x_1 = x + 1;$	x_1
$z_1 = M[A_1];$	x_1, z_1
$t = M[\mathbf{x_1}];$	x_1, z_1, t
$A_2 = \frac{x_1}{t} + t;$	x_1, z_1, t
$M[A_2] = \mathbf{z_1};$	x_1, t
$\mathbf{y_1} = M[\mathbf{x_1}];$	y_1, t
$M[\underline{y_1}] = t;$	

607

Interference graphs for minimal live ranges on basic blocks are known as interval graphs:

Interference graphs for minimal live ranges on basic blocks are known as interval graphs:

vertex === interval edge === joint vertex

608

The live ranges of x and z can be split:

	\mathcal{L}
	x, y, z
$A_1 = x + y;$	x, z
$M[A_1] = z;$	x
$\frac{x_1}{x_1} = x + 1;$	x_1
$z_1 = M[A_1];$	x_1, z_1
$t = M[\mathbf{x_1}];$	x_1, z_1, t
$A_2 = \frac{\mathbf{x_1}}{\mathbf{t}} + t;$	x_1, z_1, t
$M[A_2] = \mathbf{z_1};$	x_1, t
$\mathbf{y_1} = M[\mathbf{x_1}];$	y_1, t
$M[\mathbf{y_1}] = t;$	

607

The covering number of a vertex is given by the number of incident intervals.

Theorem:

maximal covering number

size of the maximal clique

minimally necessary number of colors :-)

Graphs with this property (for every sub-graph) are called $\operatorname{\mathsf{perfect}}$...

A minimal coloring can be found in polynomial time :-))

The covering number of a vertex is given by the number of incident intervals.

Theorem:

maximal covering number

size of the maximal clique

minimally necessary number of colors :-)

Graphs with this property (for every sub-graph) are called perfect ...

A minimal coloring can be found in polynomial time :-))

609

Idea:

- \rightarrow Conceptually iterate over the vertices $0, \ldots, m-1$!
- \rightarrow Maintain a list of currently free colors.
- → If an interval starts, allocate the next free color.
- → If an interval ends, free its color.

This results in the following algorithm:

609

```
 \begin{aligned} &\text{free} = [1, \dots, k]; \\ &\text{for } (i = 0; i < m; i + +) \ \{ \\ &\text{init}[i] = []; \ \text{exit}[i] = []; \\ \\ &\text{forall } (I = [u, v] \in \text{Intervals}) \ \{ \\ &\text{init}[u] = (I :: \text{init}[u]); \ \text{exit}[v] = (I :: \text{exit}[v]); \\ \\ &\text{for } (i = 0; i < m; i + +) \ \{ \\ &\text{forall } (I \in \text{init}[i]) \ \{ \\ &\text{color}[I] = \text{hd free}; \ \text{free} = \text{tl free}; \\ \\ &\text{forall } (I \in \text{exit}[i]) \ \text{free} = \text{color}[I] :: \text{free}; \\ \\ \\ &\text{} \} \end{aligned}
```

Discussion:

- → For arbitrary programs, we thus may apply some heuristics for graph coloring ...
- → If the number of real register does not suffice, the remaining variables are spilled into a fixed area on the stack.
- ightarrow Generally, variables from inner loops are preferably held in registers.
- → For basic blocks we have succeeded to derive an optimal register allocation :-)
 - The number of required registers could even be determined before-hand!
- → This works only once live ranges have been split.
- Splitting of live ranges for full programs results programs in static single assignment form ...

SSA