Script generated by TTT

Title: Seidl: Programmoptimierung (16.12.2013)
Date: Mon Dec 16 14:18:08 CET 2013
Duration: 88:13 min

Pages: 42

Assume that (u, _, v) is the back edge.
‘We are interested in edges which during each iteration are executed Then edges k = (11, _, 1) could be selected such that:
exactly once:
e 1 pre-dominates 1,

@ e 1, pre-dominates vq;

e 1) predominates .

This property can be expressed by means of the pre-dominator relation ...

496 497

‘We are interested in edges which during each iteration are executed
i ﬂ
Q

This property can be expressed by means of the pre-dominator relation ...

exactly once:

496

Assume that (u,_, v) is the back edge.

Then edges k& = (uy,_.v;) could be selected such that:
e 1 pre-dominates 1,
® 1, pre-dominates v;

e 1 predominates .

Assume that (u,_, v) is the back edge.

Then edges & = (w1, _,v1) could be selected such that:
e o pre-dominates t,;
e 1, pre-dominates v;

e) predominates 1.

We are interested in edges which during each iteration are executed

;

This property can be expressed by means of the pre-dominator relation ...

exactly once:

Assume that (u,_, v) is the back edge.

Then edges % = (uy,_,v1) could be selected such that:
e © pre-dominates
e 1, pre-dominates v;

e | predominates .

On the level of source programs, this is trivial:

do { S1...5k
} while (e);

The desired assignments must be among the s; :-)

[teration Variable:

¢ is an iteration variable if the only definition of ¢ inside the loop occurs
at an edge which separates the body and is of the form:

=1+ h;
for some loop constant /i .
A loop constant is simply a constant (e.g., 42), or slightly more libaral,

an expression which only depends on variables which are not modified
during the loop :-)

498 499
(3) Differences for Sets
Iteration Variable: Consider the fixpoint computation:
.. L L x =
i 1s an iteration variable if the only definition of ¢ inside the loop occurs
at an edge which separates the body and is of the form: for (t = Fu;t C wi|t = Fa;))
r=xUt:

t =1+ h;
for some loop constant /i .
A loop constant is simply a constant (e.g., 42), or slightly more libaral,

an expression which only depends on variables which are not modified
during the loop :-)

499

If F isdistributive, it could be replaced by:
x =0
for (A=Fa:A#0A=(FA)\)
r=xUA;

The function F must only be computed for the smaller sets A :-)

semi-naive iteration

500

Instead of the sequence: @ C F (@) € F*(() C ... Instead of the sequence: @ C F (@) C F?2(f) C

we compute: Ay U Ay UL we compute: AU Ay, UL
where: A1 = F(FY(0)\F(D) where: Aipr = FF{ONF(D)
= FANAIU...UA;) with Ag=0 = FANAU...UA;) with Ay=10
Assume that the costsof F o is 1+ #u . Assume that the costs of F z is 1+ #ux .
Then the costs may sum up to: Then the costs may sum up to:
naive 1424+ ... 4+n+n = in(n+3) c naive 1+24+ ... 4+n+n = 3n(n+3)
semi-naive 2n (_] semi-naive 2n
where n is the cardinality of the result. where 1 is the cardinality of the result.
S A linear factor is saved :-) —_— A linear factor is saved :-)
501 501
Examples:

2.2 Peephole Optimization
y=Mzl;x=x+1, = y = M[z++];
[dea: // given that there is a specific post-increment instruction :-)
=1y —a+ta; — 2 =1

e Slide a small window over the program. o
o) o)) // algebraic simplifications :-)
e Optimize agressively inside the window, i.e.,

r = =
> Eliminate redundancies! v =0 . t=1® 2
> Replace expensive operations inside the window by cheaper =9 — =1+

ones!

02 503

Important Subproblem:

nop-Optimization

Examples:
() ®
y=Mz|;z=2+1; —_— y = M[z++]; lab ﬁ lab
// given that there is a specific post-increment instruction :-) . o
z=y—a+ —— Z=1; :
// algebraic simplifications :-) o
r=1=xI —_—
x=0; —— r=x®
=D . 5=+ » If (vy,;,v) isanedge, v, hasno further out-going edge.
> Consequently, we can identify ©;, and v :-)
» The ordering of the identifications does not matter :-))
503 504
)]
SN NOR
Implementation:

e We construct a function next : Nodes — Nodes with:

next v if (u,:;,v) edge
next u =
u otherwise
Warning: This definition is only recursive if there are :-loops
m
o Wereplace every edge:
(u, lab,v) S

(u, lab, next v)

... whenever lab # ;

e All :-edges are removed :-)

305

Example:

506

next 1l = 1
next 3 = 4
nexth = 6

Example:

next 1 = 1
next3 = 4
nexts = 6

Example:

next 1 = 1
next 3 = 4
next5 = 6

506 507
Example:

2. Subproblem: Linearization o: ‘/ .
After optimization, the CFG must again be brought into a linearly I if (e1) QOt
arrangement of instructions :-) 4 halt

2: | Rumpf
Warning: 3 if ey

goto I;

Not every linearization is equally efficient !!!

08

Bad: The loop body is jumped into

509

=(

Example:

I better cache behavior

510

I: if (leq) goto 4;

2: Rumpf
3. if(le2) goto I;
4: halt

)

Idea:

e Assign to each node a temperature!

e always jumps to

(1) nodes which have already been handled;

(2) colder nodes.

e Temperature =~ nesting-depth

For the computation, we use the pre-dominator tree and strongly
connected components ...

511

... in the Example:

The sub-tree with back edge is hotter ...

512

... in the Example:

513

More Complicated Example:

& o

@ Loop]1]
™

Loop[3]

q

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful for do-while-loops with breaks ...

o8 O

More Complicated Example:

g

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful for do-while-loops with breaks ...

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful for do-while-loops with breaks ...

Summary: The Approach

(1) For every node, determine a temperature;
(2) Pre-order-DFS over the CFG;
> If an edge leads to a node we already have generated code
for, then we insert a jump.
> If anode has two successors with different temperature,
then we insert a jump to the colder of the two.

> If both successors are equally warm, then it does not matter

)

519

Summary: The Approach

(1) For every node, determine a temperature;
(2) Pre-order-DFS over the CFG;
> If an edge leads to a node we already have generated code
for, then we insert a jump.

> If anode has two successors with different temperature,

then we insert a jump to the colder of the two.

> If both successors are equally warm, then it does not matter

-)

2.3 Procedures

We extend our mini-programming language by procedures without
parameters and procedure calls.

For that, we introduce a new statement:
T0:
Every procedure [has a definition:

fO{ stmt™ }

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main () .

520

2.3 Procedures

‘We extend our mini-programming language by procedures without
parameters and procedure calls.

For that, we introduce a new statement:
J0:

Every procedure [has a definition:
5O A stmt®)

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main () .

2.3 Procedures

We extend our mini-programming language by procedures without
parameters and procedure calls.

For that, we introduce a new statement:
10:
Every procedure [/ has a definition:

fFO { stmt™ }

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main () .

520

Example:

int a,ret; f0{

main () { int b;
a=3; if (@ < 1) {ret = 1; goto exit; }
SO b=ua;
MI17] = ret; a=b-1,
ret = 0; JO;

} ret = b - ret;

exit :
}

Such programs can be represented by a set of CFGs: one for each
procedure ...

wn
o

. in the Example:

maini

2

In order to optimize such programs, we require an extended operational ... in the Example:

semantics :-)

>

Program executions are no longer paths, but forests: @

—
®

©
©
©)

The function [.] is extended to computation forests: w :
[w] : (Vars = Z) x (N = Z) — (Vars = Z) x (N - Z)

Foracall k= (u,[();,v) wemust:

e determine the initial values for the locals:

/% enter p = {x+— 0|z € Locals} D (p|Grobass)

e ... combine the new values for the globals with the old values for the
locals:
/A combine (p1, p2) = (1| Locats) © (02| Gtobats)
e .. evaluate the computation forest inbetween:
[k (] (p,) = let (p1, 1) = [w] (enter p, j1)

in (combine (p, p1), f1)

©_

~—©

©7

®

©

GT—@ |

@E IS
®

