Script generated by TTT

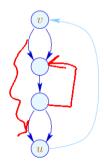
Title: Seidl: Programmoptimierung (16.12.2013)

Date: Mon Dec 16 14:18:08 CET 2013

Duration: 88:13 min

Pages: 42

We are interested in edges which during each iteration are executed exactly once:



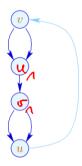
This property can be expressed by means of the pre-dominator relation ...

Assume that $(u, _, v)$ is the back edge.

Then edges $k = (u_1, _, v_1)$ could be selected such that:

- v pre-dominates u_1 ;
- u_1 pre-dominates v_1 ;
- v_1 predominates u.

We are interested in edges which during each iteration are executed exactly once:



This property can be expressed by means of the pre-dominator relation ...

496

Assume that $(u, _, v)$ is the back edge.

Then edges $k = (u_1, _, v_1)$ could be selected such that:

- v pre-dominates u_1 ;
- u_1 pre-dominates v_1 ;
- v_1 predominates u.

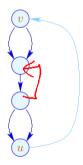
Assume that $(u, _, v)$ is the back edge.

Then edges $k=(u_1,_,v_1)$ could be selected such that:

- v pre-dominates u_1 ;
- u_1 pre-dominates v_1 ;
- v_1 predominates u.

497

We are interested in edges which during each iteration are executed exactly once:



This property can be expressed by means of the pre-dominator relation ...

Assume that $(u, _, v)$ is the back edge.

Then edges $k = (u_1, _, v_1)$ could be selected such that:

- v pre-dominates u_1 ;
- u_1 pre-dominates v_1 ;
- v_1 predominates u.

On the level of source programs, this is trivial:

do
$$\{s_1 \dots s_k\}$$
 while (e) ;

The desired assignments must be among the s_i :-)

498

Iteration Variable:

i is an iteration variable if the only definition of i inside the loop occurs at an edge which separates the body and is of the form:

$$i = i + h;$$

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more libraal, an expression which only depends on variables which are not modified during the loop :-)

Iteration Variable:

i is an iteration variable if the only definition of i inside the loop occurs at an edge which separates the body and is of the form:

$$i = i + h$$
;

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more libaral, an expression which only depends on variables which are not modified during the loop :-)

499

(3) Differences for Sets

Consider the fixpoint computation:

$$x = \emptyset;$$

for $(t = Fx; t \not\subseteq x; t = Fx;)$
 $x = x \cup t;$

If F is distributive, it could be replaced by:

$$x=\emptyset;$$
 for $(\Delta=F\,x;\Delta\neq\emptyset;\Delta=(F\,\Delta)\setminus x;)$ $x=x\cup\Delta;$

The function F must only be computed for the smaller sets Δ :-) semi-naive iteration

Instead of the sequence: $\emptyset \subseteq F(\emptyset) \subseteq F^2(\emptyset) \subseteq ...$

we compute: $\Delta_1 \cup \Delta_2 \cup \ldots$

where: $\Delta_{i+1} = F(F^i(\emptyset)) \setminus F^i(\emptyset)$

 $= F(\Delta_i) \setminus (\Delta_1 \cup \ldots \cup \Delta_i) \text{ with } \Delta_0 = \emptyset$

Assume that the costs of Fx is 1 + #x.

Then the costs may sum up to:

naive	$1+2+\ldots+n+n$	=	$\frac{1}{2}n(n+3)$	5
semi-naive			2n	حا

where n is the cardinality of the result.

→ A linear factor is saved :-)

501

2.2 Peephole Optimization

Idea:

- Slide a small window over the program.
- Optimize agressively inside the window, i.e.,
 - → Eliminate redundancies!
 - → Replace expensive operations inside the window by cheaper ones!

Instead of the sequence: $\emptyset \subseteq F(\emptyset) \subseteq F^2(\emptyset) \subseteq ...$

we compute: $\Delta_1 \cup \Delta_2 \cup \ldots$

where: $\Delta_{i+1} = F(F^i(\emptyset)) \backslash F^i(\emptyset)$ $= F(\Delta_i) \backslash (\Delta_1 \cup \ldots \cup \Delta_i) \quad \text{with } \Delta_0 = \emptyset$

Assume that the costs of Fx is 1 + #x.

Then the costs may sum up to:

naive	$1+2+\ldots+n+n$	=	$\frac{1}{2}n(n+3)$
semi-naive			2n

where n is the cardinality of the result.

A linear factor is saved :-)

501

Examples:

y = M[x]; x = x + 1; \Longrightarrow y = M[x++];

// given that there is a specific post-increment instruction :-)

z = y - a + a; \Longrightarrow z = y;

// algebraic simplifications :-)

x = x; \Longrightarrow

x = 0; \Longrightarrow $x = x \oplus x;$

 $x = 2 \cdot x;$ \Longrightarrow x = x + x;

Examples:

$$y=M[x]; x=x+1; \longrightarrow y=M[x++];$$
// given that there is a specific post-increment instruction :-)
 $z=y-a+a; \longrightarrow z=y;$
// algebraic simplifications :-)
 $x=x; \longrightarrow ;$
 $x=0; \longrightarrow x=x\oplus x;$
 $x=2\cdot x; \longrightarrow x=x+x;$

503

Important Subproblem: *nop*-Optimization

- \rightarrow If $(v_1, :, v)$ is an edge, v_1 has no further out-going edge.
- \rightarrow Consequently, we can identify v_1 and v:-)
- → The ordering of the identifications does not matter :-))

504

beh (1);

Implementation:

Warning: This definition is only recursive if there are ;-loops ???

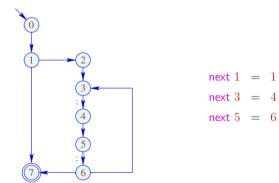
• We replace every edge:

$$(u, lab, v) \implies (u, lab, next v)$$
... whenever $lab \neq ;$

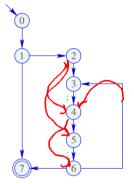
505

• All ;-edges are removed ;-)

Example:



Example:



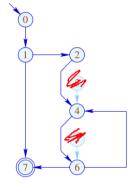
next 1 = 1

next 3 = 4

 $\mathsf{next} \; 5 \;\; = \;\; 6$

506

Example:



next 1 = 1

next 3 = 4

next 5 = 6

507

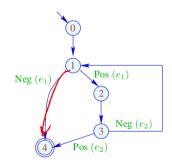
2. Subproblem: Linearization

After optimization, the CFG must again be brought into a linearly arrangement of instructions :-)

Warning:

Not every linearization is equally efficient !!!

Example:



0: 1: if (e₁)

4: halt

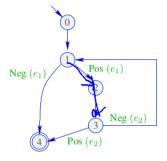
2: Rumpf

3: if (e_2) got (e_2) got (e_2) got (e_3) got (e_4) got

Bad: The loop body is jumped into :-(

509

Example:



0:

1: if $(!e_1)$ goto 4;

2: Rumpf

3: if $(!e_2)$ goto 1;

4: halt

// better cache behavior :-)

510

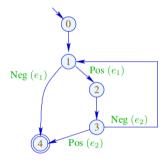
Idea:

- Assign to each node a temperature!
- always jumps to
 - (1) nodes which have already been handled;
 - (2) colder nodes.
- Temperature \approx nesting-depth

For the computation, we use the pre-dominator tree and strongly connected components ...

511

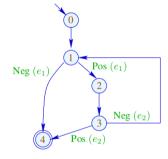
... in the Example:

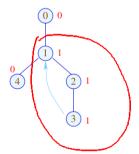


4 2

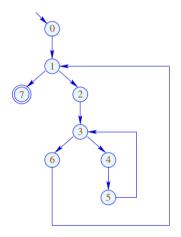
The sub-tree with back edge is hotter ...

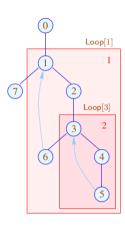
... in the Example:





More Complicated Example:

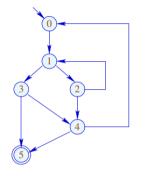


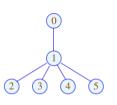


516

Our definition of Loop implies that (detected) loops are necessarily nested :-)

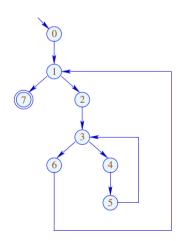
Is is also meaningful for do-while-loops with breaks ...

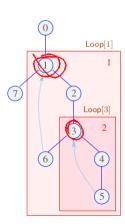




517

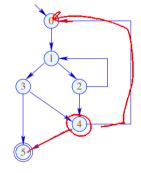
More Complicated Example:

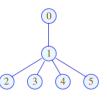




Our definition of Loop implies that (detected) loops are necessarily nested :-)

Is is also meaningful for do-while-loops with breaks ...

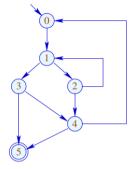


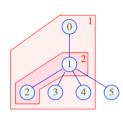


517

Our definition of Loop implies that (detected) loops are necessarily nested :-)

Is is also meaningful for do-while-loops with breaks ...





518

Summary: The Approach

- 1) For every node, determine a temperature;
- (2) Pre-order-DFS over the CFG;
 - → If an edge leads to a node we already have generated code for, then we insert a jump.
 - → If a node has two successors with different temperature, then we insert a jump to the colder of the two.
 - → If both successors are equally warm, then it does not matter ;-)

Summary: The Approach

- (1) For every node, determine a temperature;
- (2) Pre-order-DFS over the CFG;
 - → If an edge leads to a node we already have generated code for, then we insert a jump.
 - → If a node has two successors with different temperature, then we insert a jump to the colder of the two.
 - → If both successors are equally warm, then it does not matter
 ;-)

519

2.3 Procedures

We extend our mini-programming language by procedures without parameters and procedure calls.

For that, we introduce a new statement:

f();

Every procedure f has a definition:

 $f() \{ stmt^* \}$

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main ().

2.3 Procedures

We extend our mini-programming language by procedures without parameters and procedure calls.

For that, we introduce a new statement:

f();

Every procedure f has a definition:

 $f() \{ stmt^* \}$

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main ().

520

Example:

```
\begin{array}{lll} & \text{int } a, \text{ret}; & & & & & & & \\ & \text{main ()} & & & & & \text{int } b; \\ & & & & & & & \text{if } (a \leq 1) \text{ } \{\text{ret} = 1; \text{goto exit}; \} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

Such programs can be represented by a set of CFGs: one for each procedure ...

2.3 Procedures

We extend our mini-programming language by procedures without parameters and procedure calls.

For that, we introduce a new statement:

f();

Every procedure f has a definition:

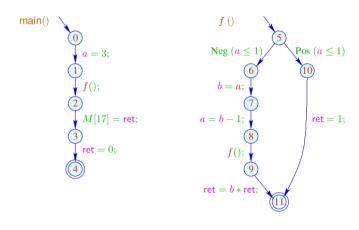
 $f() \{ stmt^* \}$

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main ().

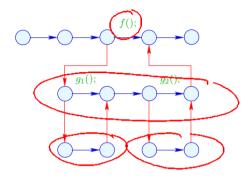
520

... in the Example:



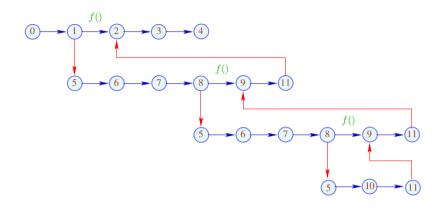
In order to optimize such programs, we require an extended operational semantics ;-)

Program executions are no longer paths, but forests:



523

... in the Example:



524

The function $[\![.]\!]$ is extended to computation forests: w:

$$\llbracket w \rrbracket : (Vars \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z}) \to (Vars \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z})$$

For a call k = (u, f();, v) we must:

• determine the initial values for the locals:

enter
$$\rho = \{x \mapsto 0 \mid x \in Locals\} \oplus (\rho|_{Globals})$$

• ... combine the new values for the globals with the old values for the locals:

$$\rightarrow$$
 combine $(\rho_1, \rho_2) = (\rho_1|_{Locals}) \oplus (\rho_2|_{Globals})$

... evaluate the computation forest inbetween:

$$\llbracket k \ \langle w \rangle \rrbracket \ (\rho, \mu) \quad = \quad \text{let} \ \ (\rho_1, \mu_1) = \llbracket w \rrbracket \ (\text{enter} \ \rho, \mu)$$

$$\text{in} \quad (\text{combine} \ (\rho, \rho_1), \mu_1)$$