Script generated by TTT

Title:

Date:

Seidl: Programmoptimierung (09.12.2013)

Mon Dec 09 14:17:09 CET 2013

Duration: 86:50 min

Pages: 48

An expression ¢ iscalled busy along a path 7, if the expression
is evaluated before any of the variables = € Vars(e) is overwritten.

// backward analysis!

¢ is called very busy at u,if ¢ isbusy along every path

Tou =" stop .

428
An expression ¢ is called busy along a path =, if the expression ¢
is evaluated before any of the variables 1 € Vars(e) is overwriten. L
Our complete lattice is given by:
. _ oEapr\ Vars : — 5
// backward analysis! B =27 with C = 2

¢ is called very busy at w,if ¢ isbusy along every path

mu —" stop

Accordingly, we require:

where for

Blu] = (W{[[ﬂ]j O] :u—*stop}
=k ke
[7]* = [k]fo...o [kn]

429

Theeffect [k]* ofanedge k= (u,lab,v) only depends on lab ,
ie, [k]F=[lab]* where:

[T 5 oy

(PosOFB = N B = BU{)
[r=¢]*B = (B\Expr,)U{e}

[~ MAFB = (B\Ewr,)U{c)
[Mle)] = exF B = BU{ey, ez}

430

These effects are all distributive. Thus, the least solution of the constraint
system yields precisely the MOP — given that stop is reachable from
every program point :-)

Example:

7]

6 | {ur + w2}
= Ma] s 0

4| qz+1)

3| {o+1)

2| qre1)

1]

0]

431

Apoint u iscalled safe for ¢,if ¢ & Afu]UBu],je, ¢ is
either available or very busy.

Idea:

e Weinsert computations of ¢ suchthat e becomes available at
all safe program points :-)

e Weinsert T, = ¢; after every edge (u, lab, v) with

c€E B[e‘}\[[/ah]]il(A[u] U Blul)

432

Transformation 5.1:

()
lab ﬁ
O,

e (e€ B[r‘}\[[h:f:]]i‘ (Alu] U Blul))

Transformation 5.1:

® ®
lab ﬁ lab
O, O

I.=e (eeg B[a']\[[t’dﬂ':ﬂi_1 (Afu] U Bul))

\@ I.=e: (ec€BQ)

433

Transformation 5.2:

= q v =",
1 analogously for the other uses of ¢
// at old edges of the program.]
Bernhard Steffen, Dortmund Jens Knoop, Wien
44 435
In the Example: In the Example:
Ll A B A 5|
0 0 0 0 0 0
r = Mla] m=x+1i |1 1] 0 r = m=x+1 |1 0 [}
2 0 {=+1} 2 0 {r+1}
3 0 {z=+ 1} 3 0 {r+1}
y2 =1+ 1 4 (1} (o4 1} p=x+1 4 {z+1} {r+1}
Mlz) =y +y; | D 0 {z+ 1} Ml =1+ ye | D 0 {r+1}
6 {z + 1} {s + w2} G {z+ 1} {m +y2}
7| {z+ 1L +w} 0 T {z+ 1+ 12} [}
436 437

Im Example:

A B
] 0
] 0
i] {z+ 1}
] {z+1}
{2+ 1} {z+1}
0 {z+1}
[x+1} {n +y2}
7| {z+ Ly + 2} b

438

Correctness:

Let m denote apath reaching © after which a computation of an
edge with ¢ follows.

Then there is a maximal suffix of 7 such that for every edge
k = (u,lab,u") in the suffix:

ee [[[m’;ﬂi(A[u] U Blu])

439

Correctness:

Let 7 denote a path reaching ¢ after which a computation of an
edge with ¢ follows.

Then there is a maximal suffix of 7 such that for every edge
k = (u,lab,u") in the suffix:

e € [[iah]]il(A[u} U Blu])

439

Correctness:

Let 7 denote a path reaching o after which a computation of an
edge with ¢ follows.

Then there is a maximal suffix of 7 such that for every edge
k = (u,lab,u') in the suffix:

e e [[[(IIJH?A(A[H] U Blu])

In particular, no variable in ¢ receives a new value :-)

Then 7. = e; isinserted before the suffix :-))

440

We conclude:

e Whenever the value of ¢ isrequired, ¢ isavailable :-)

— correctness of the transformation
e Every 1" = e:which is inserted into a path corresponds to an

which is replaced with 7T =)

— non-degradation of the efficiency

441

€

Correctness:
Let m denote apath reaching © after which a computation of an

edge with ¢ follows.

Then there is a maximal suffix of 7 such that for every edge
k = (u,lab,u') in the suffix:

ee [[lrzhﬂi(A[u] U Blu])

We conclude:

e Whenever the value of ¢ isrequired, ¢ isavailable :-)

— correctness of the transformation
e Every T = e:which is inserted into a path corresponds to an

which is replaced with 7' =)

— non-degradation of the efficiency

441

(S

1.8 Application: Loop-invariant Code

Example:

for (i = 0;1 < n;i++)
alt] = b+ 3;

// The expression b+ 3 isrecomputed in every iteration :~(

// This should be avoided :-)

442

The Control-flow Graph: Idea: Transform intoa do-while-loop ...

Neg(i < n)

Neg(i < n) Pos(i < n)

443 445

..now thereisaplacefor 7 =e¢; :-)
Application of TS5 (PRE):

] oA
-P(\t\l_r - ﬂ
:\,.D\ T=b+3; o 1 m w
Neg(i < n) Neg(i < n) T , m

&3 {fJ f ii}

|
=

=2 s = s =

Neg(i < n) Pos(i < n)
Pos(i < n)

446 447

Application of T5 (PRE):

Conclusion:

e Elimination of partial redundancies may move loop-invariant code

0; ‘ I A B out of the loop :-))

0 0 0 e This only works properly for do-while-loops <
Neg(i osti < n) 1 0 0 e To optimize other loops, we transform them into do-while-loops
2 0 {b+3} before-hand:
30 {b+3} 0
4| {b+ 3} 1] while (b) stmt —= if (b)
5] {b+3} 1] /\ /l\ do stmt 6_
G| {b+ 3} 1] ‘ while (b);
7 0 0
Neg(i < n) Pos(i < n) —_— Loop Rotation
448 449
Applicationof T5 (PRE): Application of TS5 (PRE):

N A B . o4 B
o 0 0 o 0 0

Pos(i <) oo e <n) oo | 0

Neg(i 2 0 e o 2 0 |{b+3)
3| {b+3}] 3‘\\ {b+ 3} 0
4 [{b+ 3} 1] 4 Mb+ 3}]
Sl{b+3}| 0 S({p+3y] 0
6| {b+ 3}] 6 /b + 3}]
70 0 O [v, 0 0
a4 4

..now there isaplacefor 1 ' =e¢: :-) CL

Pos(i < n)

446

Conclusion:

e Elimination of partial redundancies may move loop-invariant code
out of the loop :-))

e This only works properly for do-while-loops :~(

e To optimize other loops, we transform them into do-while-loops
before-hand:
while (b) stmt ——= if (b)
do stmt
while (b);

= Loop Rotation

449

Problem:

If we do not have the source program at hand, we must re-construct
potential loop headers :-)

—_— Pre-dominators

u pre-dominates v, if every path 7 : start =" v contains u. We
write: u = v.

“=" isreflexive, transitive and anti-symmetric :-)

450

Problem:

If we do not have the source program at hand, we must re-construct
potential loop headers ;-)

e Pre-dominators
. pre-dominates v, if every path 7 : start —" v contains u. We
write: u = v .
G M . - st : . .
=" isreflexive, transitive and anti-symmetric ~ :-)
450

Computation:

We collect the nodes along paths by means of the analysis:
P= 2_\‘:«!’('\') E — 2

I[(_._.i‘)]li_[) =| PuU{v}

Then the set P[v] of pre-dominators is given by:

Pl] = ﬂ{[[’]f]lj {start} | 7 : start =" v}

Since [k]* are distributive, the P[v] can computed by means of
fixpoint iteration :-)

Example:

© o
0 {0}
(1) 1 o1
{0, 1,2}
{0,1,2,3}

©)
© 410,1,2.3,4)
@

8]

©)

o

{0,1,5}

452

Since [k]* are distributive, the P[v] can computed by means of
fixpoint iteration :-)

Example:

© N
0 {0}
(1) 1 {01

2| {0.1,2}
31 {0,1,2,3}

©),
© 4]10,1,2,3,4)
@

®

50 {0,1,5}

452

6 »

The partial ordering *“=-" in the example:

N

0 {0}

1| 0.1}

2%

{0,1,2}
{0,1,2,3}

140,1,2,3,4}

5| {0,1,5)

Apparently, the result is a tree :-)

In fact, we have:

Theorem:

Every node o has at most one immediate pre-dominator.

Proof:

Assume:

there are 1y # u» which immediately pre-dominate .
If w; = us, then wu; notimmediate.

Consequently, i, u, are incomparable :-)

454

Now forevery : start =" v:

T =T Ty with

o start —*

mo s = v

If, however, wu,u; are incomparable, then there is path:

avoiding uq :

start =™ v

Observation:

The loop head of a while-loop pre-dominates every node in the body.
A back edge from the exit = tothe loophead v can be identified

through
v € Plu]

Accordingly, we define:

Transformation 6:

uy & Plu]
uy, v € Plu

‘We duplicate the entry check to all back edges :-)

... in the Example:

461

... in the Example:

462

Warning:

There are unusual loops which cannot be rotated:

o Pre-dominators:

ONONO

463

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should
be duplicated :-(

464

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should
be duplicated :-(

465

... but also common ones which cannot be rotated:

\

\.
="

Here, the complete block between back edge and conditional jump should
be duplicated :-(

466

1.9 Eliminating Partially Dead Code

Example:

x -+ 1 need only be computed along one path ;-(

467

Idea:

468

