Script generated by TTT

Title: Seidl: Programmoptimierung (09.12.2013)

Date: Mon Dec 09 14:17:09 CET 2013

Duration: 86:50 min

Pages: 48

An expression e is called busy along a path π , if the expression e is evaluated before any of the variables $x \in Vars(e)$ is overwriten.

// backward analysis!

e is called very busy at u, if e is busy along every path $\pi: u \to^* stop$.

Accordingly, we require:

$$\mathcal{B}[u] \ = \ \bigcap \{ \llbracket \pi
rbracket^\sharp \ \emptyset \ | \ \pi : u o^* \ stop \}$$

where for $\pi = k_1 \dots k_m$:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_1 \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_m \rrbracket^{\sharp}$$

An expression e is called busy along a path π , if the expression e is evaluated before any of the variables $x \in Vars(e)$ is overwritten.

// backward analysis!

```
e is called very busy at u, if e is busy along every path \pi: u \to^* stop.
```

428

Our complete lattice is given by:

$$\mathbb{B} = 2^{Expr \setminus Vars}$$
 with $\sqsubseteq = \supseteq$

The effect $[\![k]\!]^{\sharp}$ of an edge k=(u,lab,v) only depends on lab, i.e., $[\![k]\!]^{\sharp}=[\![lab]\!]^{\sharp}$ where:

$$[\![]\!]^{\sharp} B = B$$

$$[\![Pos(e)]\!]^{\sharp} B = [\![Neg(e)]\!]^{\sharp} B = B \cup \{e\}$$

$$[\![x = e;]\!]^{\sharp} B = (B \backslash Expr_x) \cup \{e\}$$

$$[\![x = M[e];]\!]^{\sharp} B = (B \backslash Expr_x) \cup \{e\}$$

$$[\![M[e_1] = e_2;]\!]^{\sharp} B = B \cup \{e_1, e_2\}$$

These effects are all distributive. Thus, the least solution of the constraint system yields precisely the MOP — given that *stop* is reachable from every program point :-)

Example:

7	Ø
6	$\{y_1+y_2\}$
5	${x+1}$
4	${x+1}$
3	${x+1}$
2	${x+1}$
1	Ø
0	Ø

431

A point u is called safe for e, if $e \in A[u] \cup B[u]$, i.e., e is either available or very busy.

Idea:

- We insert computations of e such that e becomes available at all safe program points :-)
- We insert $T_e = e$; after every edge $(\mathbf{u}, lab, \mathbf{v})$ with

$$e \in \mathcal{B}[v] \setminus \llbracket lab \rrbracket_{\mathcal{A}}^{\sharp} (\mathcal{A}[u] \cup \mathcal{B}[u])$$

432

Transformation 5.1:

Transformation 5.1:

433

Transformation 5.2:

// analogously for the other uses of e

// at old edges of the program.

Jens Knoop, Wien

434

In the Example:

In the Example:

		\mathcal{A}	\mathcal{B}
	0	Ø	Ø
1;	1	Ø	Ø
	2	Ø	${x+1}$
	3	Ø	${x+1}$
	4	${x+1}$	${x+1}$
	5	Ø	${x+1}$
	6	${x+1}$	$\{y_1+y_2\}$
	7	${x+1,y_1+y_2}$	Ø

436

Im Example:

438

Correctness:

Let $\ \pi$ denote a path reaching $\ v$ after which a computation of an edge with $\ e$ follows.

Then there is a maximal suffix of π such that for every edge k = (u, lab, u') in the suffix:

$$e \in [[lab]]_{\mathcal{A}}^{\sharp}(\mathcal{A}[\mathbf{u}] \cup \mathcal{B}[\mathbf{u}])$$

439

Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge k = (u, lab, u') in the suffix:

$$e \in \llbracket lab \rrbracket_A^\sharp (\mathcal{A}[\mathbf{u}] \cup \mathcal{B}[\mathbf{u}])$$

Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge k = (u, lab, u') in the suffix:

$$e \in [[lab]]_{\mathcal{A}}^{\sharp}(\mathcal{A}[\mathbf{u}] \cup \mathcal{B}[\mathbf{u}])$$

In particular, no variable in e receives a new value :-)

Then $T_e = e$; is inserted before the suffix :-))

We conclude:

- Whenever the value of e is required, e is available :-)
 correctness of the transformation
- Every T = e; which is inserted into a path corresponds to an e which is replaced with T :-))
 non-degradation of the efficiency

441

We conclude:

- Whenever the value of e is required, e is available :-)
 correctness of the transformation
- Every T=e; which is inserted into a path corresponds to an e which is replaced with T :-))

⇒ non-degradation of the efficiency

Correctness:

Let $\ \pi$ denote a path reaching $\ v$ after which a computation of an edge with $\ e$ follows.

Then there is a maximal suffix of π such that for every edge k = (u, lab, u') in the suffix:

$$e \in [[lab]]_{\mathcal{A}}^{\sharp}(\mathcal{A}[\mathbf{u}] \cup \mathcal{B}[\mathbf{u}])$$

1.8 Application: Loop-invariant Code

Example:

for
$$(i = 0; i < n; i++)$$

 $a[i] = b + 3;$

- The expression b+3 is recomputed in every iteration :-(
- // This should be avoided :-)

The Control-flow Graph:

443

Idea: Transform into a do-while-loop ...

445

... now there is a place for T = e; :-)

446

Application of T5 (PRE):

	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b+3\}$
3	$\{b+3\}$	Ø
4	$\{b+3\}$	Ø
5	$\{b+3\}$	Ø
6	$\{b+3\}$	Ø
7	Ø	Ø

Application of T5 (PRE):

	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b+3\}$
3	$\{b+3\}$	Ø
4	$\{b+3\}$	Ø
5	$\{b+3\}$	Ø
6	$\{b+3\}$	Ø
7	Ø	Ø

448

Conclusion:

- Elimination of partial redundancies may move loop-invariant code out of the loop :-))
- This only works properly for do-while-loops :-(
- To optimize other loops, we transform them into do-while-loops before-hand:

while
$$(b)$$
 $stmt \implies \text{if } (b)$

$$0 \text{do } stmt$$

$$\text{while } (b);$$

$$\implies \text{Loop Rotation}$$

449

Application of T5 (PRE):

	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b+3\}$
3	$\{b+3\}$	Ø
4	$\{b+3\}$	Ø
5	$\{b+3\}$	Ø
6	$\{b+3\}$	Ø
7	Ø	Ø

Application of T5 (PRE):

Conclusion:

- Elimination of partial redundancies may move loop-invariant code out of the loop :-))
- This only works properly for do-while-loops :-(
- To optimize other loops, we transform them into do-while-loops before-hand:

$$\begin{array}{ccc} \text{while } (b) \ stmt & \Longrightarrow & \text{if } (b) \\ & & \text{do } stmt \\ & & \text{while } (b); \\ & \Longrightarrow & \text{Loop Rotation} \end{array}$$

Problem:

If we do not have the source program at hand, we must re-construct potential loop headers ;-)

⇒⇒ Pre-dominators

```
u pre-dominates v , if every path \pi: start \to^* v contains u. We write: u \Rightarrow v .
```

" \Rightarrow " is reflexive, transitive and anti-symmetric :-)

Problem:

If we do not have the source program at hand, we must re-construct potential loop headers ;-)

⇒⇒ Pre-dominators

u pre-dominates v , if every path $\pi: start \to^* v$ contains u. We write: $u \Rightarrow v$.

"⇒" is reflexive, transitive and anti-symmetric :-)

Since $[\![k]\!]^{\sharp}$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration :-)

Example:

	\mathcal{P}
0	{ <mark>0</mark> }
1	$\{0, 1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$
	1 2 3 4

Computation:

We collect the nodes along paths by means of the analysis:

$$\mathbb{P} = 2^{Nodes} \quad , \qquad \qquad \sqsubseteq \ = \ \supseteq$$

$$[\![(_,_,v)]\!]^\sharp \ P \quad = \boxed{P \cup \{v\}}$$

Then the set $\mathcal{P}[v]$ of pre-dominators is given by:

$$\mathcal{P}[v] = \bigcap \{ \llbracket \pi \rrbracket^{\sharp} \; \{start\} \; | \; \pi : start \to^* v \}$$

451

Since $[\![k]\!]^\sharp$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration :-)

Example:

	\mathcal{P}
0	{ <mark>0</mark> }
1	$\{0, 1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0,1,2,3,4\}$
5	$\{0, 1, 5\}$

The partial ordering " \Rightarrow " in the example:

	\mathcal{P}
0	{ <mark>0</mark> }
1	$\{0, 1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0,1,2,3,4\}$
5	$\{0, 1, 5\}$

453

400

Now for every $\pi : start \rightarrow^* v$:

$$\pi = \pi_1 \; \pi_2$$
 with $\pi_1 : start \to^* u_1$
$$\pi_2 : u_1 \to^* v$$

If, however, u_1, u_2 are incomparable, then there is path: $start \to^* v$ avoiding u_2 :

Apparently, the result is a tree :-)

In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:

there are $u_1 \neq u_2$ which immediately pre-dominate v.

If $u_1 \Rightarrow u_2$ then u_1 not immediate.

Consequently, u_1, u_2 are incomparable :-)

454

Observation:

The loop head of a while-loop pre-dominates every node in the body.

 $v \in \mathcal{P}[u]$

:-)

Accordingly, we define:

Transformation 6:

We duplicate the entry check to all back edges :-)

458

... in the Example:

461

... in the Example:

Warning:

There are unusual loops which cannot be rotated:

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

464

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

46

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

1.9 Eliminating Partially Dead Code

Example:

x+1 need only be computed along one path ;-(

Idea:

